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Abstract

To image live cells, the light intensity at the sample is
bounded by two limiting factors: first, photodamage and
photobleaching impose an upper bound on the total and
instantaneous incident light intensity. Second, a reduced
light intensity results in higher SNR and images of lower
quality. Compressed sensing proposes a paradigm to effi-
ciently image sparse and compressible signals, providing
a better SNR vs. photodamage trade-off than the tradi-
tional Nyquist-derived sampling schemes.
Here, we partially developed a widely applicable com-

pressed sensing scheme that can be fitted with little or no
hardware modification to a wide range of microscopes,
from a high-performance lattice light sheet microscope to
a standard epifluorescence microscope.
We first demonstrated on simulations the feasability

of compressed sensing techniques under noisy conditions
and designed a scheme where the signal of a 3D stack is
compressed in z during at the imaging step. We demon-
strated the applicability of this scheme both on extensive
simulations and on preliminary implementation on a lat-
tice light sheet microscope.
An implementation an generic epifluorescence micro-

scope together with better quality reconstructions are still
in progress.
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Introduction

Microscopy plays a central role in life sciences and con-
stitutes in itself a rapidly-evolving field that requires
sustained collaboration between wet-bench biologists,
physicists, chemists, computer scientists, etc. As tech-
nology progresses, it enables researchers to focus on
highly dynamic processes, that have been proven to be
of high importance in biological systems.

To observe highly dynamic structures requires live-
sample imaging which has always been a challenging
task, primarily for the following reasons:

1. Photobleaching: The limited number of pho-
tons emitted by one fluorophore: once a fluorescent
molecule has been excited, it can only be imaged
for a limited amount of time due to photobleach-
ing. The highly reactive environment of a live cell
combined with the intense laser excitation applied
to the sample greatly limits the number of photons
that can be collected from one fluorophore before it
bleaches

2. Contrast: High background fluorescence: the com-
plex mixture of cell constituents includes aromatic
compounds, conjugated residues and many slightly-
fluorescent components that add background noise.
Furthermore, traditional fluorescence microscopy
techniques illuminate the whole sample, beyond the
depth of field, which leads to diffuse background
noise.

3. Phototoxicity: This leads to the formation of re-
active compounds such as highly oxidizing reactive
oxygen species (ROS). These compounds have var-
ious visible consequences, ranging from the forma-
tion of stress vacuoles in cells to apoptosis, event
triggering developmental defects in small organisms.

To partially tackle these issues , several major tech-
nological breakthroughs were achieved in the past ten
years and provided biologists with better labeling dyes
(with increased quantum efficiency and lifetime Grimm
et al., 2015), better labeling techniques (allowing to con-
jugate non-protein dyes to proteins of interest – Los et
al., 2008), better hardware (electron-multiplying CCD
cameras and high-power lasers), and better microscopes
(B.-C. Chen et al., 2014).

Among these advances, light sheet microscopes
(Huisken et al., 2004) can be given a specific emphasis:
whereas in a traditional microscope, the same objective
is used to illuminate the sample and collect the emitted
light, light sheet microscopes use two objectives at a
90° angle, the first one that illuminates only one plane
of the sample, the other being a standard observation
objective (Figure 1b). With this microscope, further
refined into a lattice light sheet microscope (B.-C.
Chen et al., 2014, detailed in Section 6.1), off-focus
illumination and phototoxicity are greatly reduced
because the setup allows to only illuminate a very thin
"sheet" that matches the depth of field of the detection
objective.

Although the signal we aim to measure is continuous,
camera detectors only provide a discretized, noisy image
of the object. Thus, an appropriate sampling scheme (al-
together with carefully chosen hypotheses) is needed to
accurately reproduce the intensity at the sample. Tradi-
tional imaging makes use of the asumption that the col-
lected signal is bandlimited and samples at the Shannon-
Nyquist rate (Kim, 2011 and Wescott, 2010).

However, microscopy images are not only bandlimited,
they also exhibit a much stronger structure, with a lot
of redundancies. Such signals with redundancies, de-
nominated as compressible signals, can be sampled with
a much higher efficiency, as described by the theory of
compressed sensing, whose foundations were set by E.J.
Candes, J. Romberg, and T. Tao, 2006, provided that
an ad-hoc sampling scheme can be implemented. In this
theory, a "compressed" version of the signal is directly
acquired with a sensor that collects linear measurements
of the sample (sometimes achieving a more than 10-fold
decrease in the acquisition time). Then, a reconstruction
algorithm "decompresses" the collected sequences.

The aim of this work is to evaluate the feasabil-
ity of the implementation of such a compressed-sensing
imaging scheme within the lattice light sheet micro-
scope. After presenting the theory behind lattice light
sheet microscopy and the canonical setup of compressed
sensing, we address in order several theoretical and
implementation-related questions: (1) how to design a
sampling scheme that can be implemented in such a mi-
croscope? (2) which sensing pattern provide the best
reconstructions? (3) what is the influence of both Gaus-
sian and Poisson noise in the acquisitions? (4) can re-
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constructions be further improved by incorporating more
information about the data, that is, by performing dic-
tionary learning?

After investigating these questions based on theoreti-
cal grounds and simulations, we then turn to the practi-
cal implementation of the scheme on the microscope and
image biological samples.

Movies and code are provided as a webpage1.

1 Material and Methods

1.1 Lattice light sheet microscope

In a traditional epifluorescence microscope, the laser ex-
citation and observation are performed through the same
objective. This leads to an inefficient scheme where the
sample is illuminated beyond the depth of field. To
tackle this issues, light sheet microscope (Huisken et
al., 2004) employ a paradigm where two orthogonal ob-
jectives are used to perform excitation and observation
(Figure 1). In this setup, the excitation laser is con-
centrated on a thin "sheet". Light sheet microscopes
usually achieve a z sectioning of about 1 µm.

b.

a.

exc/obs

obs.

exc.

1.

2.

3.

1.

4.

3.

Figure 1: Comparison between (a) standard epifluorescence mi-
croscopy and (b) light sheet microscopy. In epifluorescence mi-
croscopy, the whole sample is illuminated whereas only part of
it is in the focal plane, resulting in background fluorescence and
photodamage. In light sheet microscopy, illumination is confined
to the focal plane of the objective. 1. emitted light from the
illuminated sample 2. sample labeled with a fluorescent dye 3.
glass coverslip 4. excitation light. exc. excitation objective, obs.
observation objective.

1Several movies of biological samples together with analysis
code and supplementary materials can be found on this page:
http://www.eleves.ens.fr/home/woringer/CS/

Several refinements of the light sheet allowed to obtain
even better z sectioning, and thus less phototoxicity and
photobleaching. One of them is the lattice light sheet
microscope (B.-C. Chen et al., 2014). In the lattice light
sheet microscope the sheet derives from the interference
of an array of non-diffracting Bessel beams. Indeed, pur-
posely induced interference is used to reduce the ampli-
tude of the higher order rings of the Bessel beams (see
Section 6.1 for a more detailed presentation of the theory
behind lattice light sheet microscopes).

More concretely, an array of interfering Bessel beams
can be engineered as follows. First, note that in a micro-
scope, several planes are conjugated. The most impor-
tant ones are the pupil/sample plane (or object/direct
domain) and the back pupil plane (or Fourier domain).
The two are conjugated through Fourier transforms (see
Kim, 2011 for an introduction to Fourier optics). Sec-
ond, notice that the Fourier transform of a first order,
first kind Bessel function is an annulus. Then, a Bessel
beam can be created by simply putting an annulus mask
in the Fourier domain. Third, an array of Bessel beam
can be engineered by restraining the illumination of the
annulus to several spots. The spacing of the spots then
determines the spacing of the lattice, and thus the mag-
nitude of the interference patterns.

Mask

z galvo

x galvo
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Objective
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λ/2 wave plane

PBS

Detection
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Figure 2: Optical path of the lattice light sheet microscope. Laser
excitation (bottom left) is first modulated in intensity by an AOTF
and then compressed in the z direction and stretched in the x di-
rection. The deformed beam is then sent to the SLM where a mask
pattern is applied in the image plane. In the next Fourier plane,
an annular mask creates the Bessel beam. Then, the z galvo keeps
the sheet in focus and synchronized with the observation objec-
tive while the x galvo scans the sample to create the light sheet.
The light sheet is then focused by the excitation objective that
is positioned orthogonally to the observation objective. Sample
lies in between the two objectives. blue: excitation part, green:
observation part. Adapted from B.-C. Chen et al., 2014.

In practice, a spatial light modulator, a liquid crystals
device, or SLM in the direct domain is used to create
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the array of Bessel beam. This array is then filtered by
an annulus mask in the Fourier domain (then filtering
the unwanted frequencies). A schematic of the optical
light path of a lattice light sheet microscope is presented
Figure 2

1.2 Compressed sensing, a (very) informal
introduction

1.2.1 Signals are compressible. . .

Many signals, including microscopy images, exhibit a
structure of compressible signals. Indeed, although the
uncompressed size of a 3D volume image can be very
high (e.g: 512 px × 1024 px × 300 px @ 16 bits/px =
315 MB), a simple lossless file compression can dramati-
cally reduce its size on disk (the same image, 16 bits/px,
lossless PNG compressed weighs 48 Mo): in this lossless
process, the redundant information has been factorized,
thus reducing the file size.

Another way to represent compressible signals is to
find a representation (which would be a basis or a dic-
tionary in our case) where the signal has sparse coeffi-
cients, that is, most of its coefficients are zero in this
representation.

For instance, the image of a mitotic cellX (Figure 3.a)
can be decomposed into a sparse series of coefficients
C (Figure 3.b) associated with a sparsifying basis B

(Figure 3.c, inset), such that X = CB (or in a more
realistic manner: ||X − CB||`2 < ε and C sparse, ie:
||C||`0 ≤ k0). In the pictured case, the sparsifying basis
has been learned from a dataset that contains similar
features as the sample images (the dataset was a series
of mitotic cells). One can see that in a sparsifying basis
that incorporates prior information on the structure of
mitotic cells, the particular sample (Figure 3.a) exhibits
a sparse representation, as shown by (Figure 3.c), i.e.
its ordered coefficients decay quickly to zero (red curve),
compared to the initial image (blue curve).

1.2.2 . . . because they have structure

This property of compressibility is tightly related to the
fact that such images are far from being an aggrega-
tion of pixels of random intensity: they exhibit some
structure, and such structure is captured by the PNG file
compression algorithm.

Stated differently, this means that a significant part of

the data that goes through the camera is in fact highly
redundant, and could possibly be dropped without any
effect on the data quality. Compressed sensing is all
about trying to acquire only the relevant information,
thus speeding (sometimes dramatically) the process. For
instance, if one could directly acquire an image in a PNG
format, a ∼ 6x speedup could be envisioned.

a. b.

c.

0 2000 4000 6000 8000 10000
Coefficient (sorted)

0

2000

4000

6000

8000

10000

12000

#
 c
oe

ffi
ci
en

ts

Direct coe ffic ients

Dictionary coe ffic ients

Figure 3: Microscopy images are compressible. (a). zoom on an
image acquired using the lattice light sheet microscope. Most pix-
els have nonzero values, making the signal non sparse. However
(b)., this signal can be made sparse by using a decomposition such
as non-negative matrix factorization. (c) such a decomposition
uses a matrix prior learned from the data: a dictionary (inset).
Compressibility can be appreciated by looking at the decay of the
coefficients in both representations: with the dictionary decompo-
sition, many more coefficients have zero or near-zero values.

1.2.3 Some structure can be captured in a non-
adaptive way

File compression algorithms (such as lossless PNG), how-
ever, perform their tasks in an adaptive way: one or
several passes are first performed over the whole dataset
and then the most frequent features are "factorized".
We call such transforms adaptive because the nature of
the filter will differ depending on the input.

A brilliant result from the compressed sensing theory
states (E.J. Candes, J. Romberg, and T. Tao, 2006) that
under some conditions, a series of non-adaptive mea-
surements can be performed and that the input sig-
nal can be recovered exactly using a simple algorithm
performing `1-norm minimization, provided that it is
sparse/compressible. We present below the intuition of
this reconstruction:
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1.2.4 Toy problem

Assume a 1D image X (such as an image made of only
one line) of length n = 100. Let, for the sake of the
example that this image contains two Dirac-like features
(here: two non-zero componenents), leading to a sparsity
of 98 (Figure 4). Sparsity is defined as the number of
zero components, also denoted as the `0 pseudonorm:
||X||`0 = #{xj , st. xj = 0}.

A classical view in signal theory is to consider that
X goes through a linear detector (a virtual sensor that
incorporates the imaging scheme, its imperfections, etc):
one never measures the real signal X, but rather a mea-
surement of X through a sensor A, also denoted as a
sensing matrix, Y = AX. A perfect sensor is modeled
as the identity matrix, where Y is a copy of X.

The sensing matrix A has dimensions m × n. In the
ideal sensor case, the matrix has dimension n×n, but one
can also design sensing matrices with a number of lines
m < n. Note that any square matrix of rank n provides
a lossless transformation of X: Y = AX ⇔ X = A−1Y .
Indeed, in the case where A is a Fourier matrix, X can
be recovered from Y by applying the inverse (discrete)
Fourier transform.

Compressed sensing focuses on sensing matrices of low
rank (m < n, and most of the time m� n). Such cases
are referred here as a compressed sensing setting and a
measurement matrix can be (non exhaustive list):

• a truncated Fourier transform (where only the m
first low-frequency components have been kept, the
others being discarded), see Figure 4.c, left,

• a random matrix with uniformly distributed coeffi-
cients over [0, 1] (ie: ∀(i, j) ∈ 1 . . .m×1 . . . n, Aij ∼
U([0, 1])), see Figure 4.c, right.

In the compressed sensing setting, one wants to re-
cover X from the knowledge of Y = AX and A. How-
ever, it easy to see that the problem is not well posed
because Y = AX is underparametrized and thus has
infinitely many solutions. Figure 4.d shows several solu-
tions of this problem.

Fortunately, one can add constraints to the system,
such as constraining the sparsity of X. This allow to
formulate the compressed sensing problem as an opti-
mization problem:

min
x
||x||`0 s.t. y −Ax = 0 (1)

In this case, a beautiful theorem by E.J. Candes,
J. Romberg, and T. Tao, 2006 states that the vector
X of length n can be exactly recovered from m � n

measurements (that is, Y ). This can be seen in Fig-
ure 4.d : although the truncated Fourier transform of
two Dirac forms a highly underparametrized system, the
constrained problem where one looks for a sparse so-
lution of the system exhibits the exact solution (upon
numerical approximation and assuming numerical con-
vergence).

0 20 40 60 80 100

0.0
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0.8

1.0a.

b.

c.
d.

CS reconstruction
90% truncated
90% truncated + 0->3
50% truncated

0 20 40 60 80 100

Figure 4: Toy compressed sensing problem. (a). Assume a sparse
input signal with only two non-zero coefficients, (b). this input
signal can be measured by various measurement matrices, here
(left) a Fourier basis and (right) an ideal Dirac basis, the red curves
on the right of each basis represent the measured signal Y , that
is AX. (c). compressive measurement can also be performed, in
this case, the measurement matrix is not a square anymore. Such
matrices can for instance be a truncated Fourier basis (left) or a
random matrix (right). Again, the red curves on the right show
the measured signal, that now have a smaller length than with
square measurements matrices. (d). recovering X from such an
undersampled Y is a ill-posed problem: all the curves represent
Xcandidate solution of the Y = AX problem. However, it can
be seen on this particular example that the solution with higher
sparsity matches the original signal. (blue) solution to the prob-
lem obtained by `1 minimization (closely matches the original X,
(green) signal recovered by inverse Fourier transform from 90%
of the Fourier coefficients of X, (red) same as green, but the 10%
remaining coefficients were assigned the value 3.0, (light blue)
same as green, but recovered from only 50% of the coefficients.
An offset has been added to the curves in order to differentiate
them but vertical scale is the same.

Here, we considered a very simplified model (the sig-
nals are Dirac-like), but this result generalizes to sparse
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signals in general, as detailed in Section 6.2.1.

1.3 Noisy setting

1.3.1 A theory to account for noise in com-
pressed sensing

The above presentation (together with Section 6.2) high-
lighted the foundations of compressed sensing in a noise-
less setting, in which there is a strict equality between
the measured signal y and the input signal x measured
through the measurement matrix A: y = Ax.

Unfortunately, this situation never arises in real cases,
because images are contaminated with various levels of
noise. The most traditional model to incorporate noise
into the compressed sensing setting is to relax the equal-
ity hypothesis by adding an error tolerance term ε. The
relaxed compressed sensing setting then reads (Eq. 2):

min
x
||x||`0 s.t. ||Ax− y||`2 ≤ ε (2)

Such a relaxation indeed allows some noise (of
bounded `2 norm) to interfere with the measurement.
Also, since ε > 0, the space of solutions to the problem
is bigger, and thus usually contains sparser solutions
than when ε = 0. Solving such problem thus performs
some denoising on the input. Such denoising can either
be beneficial or detrimental to the problem, depending
on the value of ε.

In this setting, the question of the uniqueness of the
solution makes little sense and is replaced by the notion
of stability: how big is the change in the reconstructed
x when small perturbations (noise) are applied to the
measurement Ax.

Remarkably, the concept of spark of a matrix µ(A)

(introduced in Supplementary Section 6.2) can be ex-
tended to the noisy case, and stability can be proven:

Theorem 1 (Stability of the relaxed problem). Denote
xε a solution to the relaxed problem (2) and assume that
the solution x to the non relaxed problem obeys ||x||`0 ≤
1
2

(
1 + 1

µ(A)

)
, then xε obeys:

||xε − x||`2 ≤
4ε2

1− µ(A)(2||x||`0 − 1)

Although interesting from a theoretical standpoint,
this result makes some asumptions on the structure of
the noise that happen to be violated in the case of mi-
croscopy imaging. We thus move to a more physics-

oriented approach to understand the effect of noisy ac-
quisitions on compressed sensing settings.

1.3.2 Sources of noise in microscopy

Several types of noises contaminate microscopy images:

1. Poisson noise: in an experimental setup, light is
collected on a matrix-based detector (CCD for in-
stance). Furthermore, the emitted fluorescence is a
stochastic process such that the average number of
photons per time unit corresponds to the average
power of the flow. We can then consider that each
pixel of the detector integrates (counts) the number
of photons it receives in one time step. Then, at
each time step, the number of photons detected can
be seen as a realization of a Poisson random vari-
able whose intensity is the "real" light brightness
we want to estimate. Thus, for a given intensity λ
at one spatial position (in one pixel), the probabil-
ity to collect k photons in a t-long time interval is
as follow: P(N = k) = e−λt(λt)k

k! .

2. Thermal noise: Going from potentially single
photons per pixel to a detectable voltage on the ac-
quisition card of the computer requires first a very
high gain, and second a very high resilience to noise
and interferences. Indeed, in EMCCD cameras, to
achieve one-photon sensitivity, a quasi-single elec-
tron has to be amplified, and any single noise in
the preamplification part will result in very high
distortions after amplification. Furthermore, for
such small currents, thermal variations are suffi-
cient to induce noise. To tackle this issue, cam-
era sensors and amplifiers operate at very low tem-
perature (-100 °C to -50 °C) and the amplification
(called electron-multiplication – EM) is realized at
the readout stage. All in all, thermal noise is usu-
ally low compared to Poisson noise under traditional
operating conditions.

3. Structural error: In many cases, the measure-
ment matrix A is not known with infinite precision.
For instance, the synchronization between the opti-
cal and mechanical parts of the microscope is never
perfect, and a non-negligible systematic error be-
tween the "theoretical" measurement matrix and
the actual measurement matrix can occur (in addi-
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tion to random fluctuations in the process). In con-
trast with the two types of noise introduced above,
this type of error is deterministic, and has been lit-
tle studied.

4. Other types: it is always possible to add other
types of noise, such as quantization noise, etc. but
those are usually negligible compared to Poisson
noise and thermal noise.

A topical issue with imaging and compressed sensing is
the fact that in contrast with traditional, widely studied
Gaussian noise, the Poisson noise that dominates the
acquisitions is unbounded and signal-dependent. Such
settings have been little studied (Raginsky, Willett, et
al., 2010, Willett and Raginsky, 2009).

1.3.3 Influence of structural errors

Consider the basis pursuit formulation of compressed
sensing:

x? = arg min
x
||x||`1 s.t. ||y −Ax||`2 ≤ ε

where x is s-sparse. One notices that this model in-
corporates additive noise by the means of the ε term, ac-
counting for some discrepancies between the ideal mea-
surement of the sparse vector Ax and its actual measure-
ment y. However, one can wonder what happens if some
structural perturbations are introduced to the sensing
matrix, that is Â = A + E. In that case, it is easy to
see that the measurement is also contaminated by multi-
plicative noise: Ex. A mathematical treatment of such
situation has been developed in Herman and Strohmer,
2009.

Assume relative bounds on the following quantities:

• ||E||2
||A||2 ≤ εA the relative magnitude of the structural
error compared to the measurement matrix,

• ||E||(s)2

||A||(s)2

≤ ε
(s)
A where the norm || · ||(s)2 denotes the

maximum of the norm over all m×s subvector with
s elements,

• ||e||2
||y||2 ≤ εy the relative magnitude of the additive
error term compared with the measured vector.

• σ
(s)
max

σ
(s)
min

≤ κ(s)
A where σ(s)max (σ(s)min, respectively) denotes

the maximum (resp. minimum) over all s-colums
submatrices of A of the maximum (resp. minimum)
of the singular value of A restricted to s columns.

It is easy to see that when A satisfies a s-RIP of con-
stant δs � 1 then κ(s)

s ≈ 1. It can then be shown that
(denoting x̃ the original vector before compression):

||x? − x̃||`2 ≤ C1

(
κ

(s)
A ε

(s)
A + ||εy||`2

)
||y||`2

This relationship gives a bound of the reconstruction
error that depends on the relative structural error.

It should be noted that such structural stability anal-
ysis has been very little studied.

1.3.4 Effect of noise on the measurements

Consider a 1-dimensional sample of brightness (λj)1≤j<n

sensed with a series of m measurements performed with
a measurement matrix (aij)1≤i<m,1≤j<n, where the mea-
surement matrix represents a light pattern applied at the
sample (a laser power modulation, thus being bounded
by nominal laser power). Then, using the m lines of the
neasurement matrix,mmeasurements can be performed,
denoted (yi)1≤i<m, that is:

yi =
n∑
j=0

λjaij

where the yi precisely stands for the number of pho-
tons (provided the matrices and inputs were properly
scaled). Then, the actual number of photons detected
at the camera follows a Poisson process P of intensity∑n

j=0 λjaij:

yi ∼ P

 n∑
j=0

λjaij


Now, assume that one acquires one compressed mea-

surement (one projection of the image onto one of the
vectors of the measurement basis) using similar parame-
ters as the standard acquisition scheme. This way, since
the camera settings are assumed to be the same, thermal
noise should affect compressed and standard measure-
ments the same way. Indeed, if one acquisition in the
standard scheme is contaminated by Gaussian, thermal
noise σSN ∼ G(µ, σ2), the sensed light yi follows a law
similar to:

yi ∼ P

 n∑
j=0

λjaij

+ σSN

In a case where only Gaussian additive noise is con-
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sidered, one can establish a direct relationship between
noise levels in the standard acquisition scheme and in the
compressed sensing scheme (see Arias-Castro and Eldar,
2011). However, when signal-dependent noise such as
Poisson noise apply, there is no easy way to compare it
with noise levels in the direct domain.

Indeed, the noise applies in the transformed domain
rather than in the direct domain. This noisy mea-
surement will then be processed by a nonlinear com-
pressed sensing reconstruction algorithm. Such algo-
rithms rarely have accurate estimates on noise sensitivity
(although bounds are often derived).

Furthermore, it should be noticed that if the signal
is very sparse in the direct domain, then the noiseless
measurement will have small magnitude (even though
the saqrse regions might have a high magnitude), and the
measurement term might become negligible compared to
the intrinsic thermal noise.

Finally, several algorithms have been designed to
specifically address the effects of such noises.

1.4 Algorithms

The compressed sensing problem (Eq. 1) can be refor-
mulated into several equivalent or very similar problems
(such as the relaxed version). Additionally, it has been
shown that a very useful and equivalent reformulation
can be obtained by replacing the `0 non-convex pseudo-
norm by the convex `1 norm. This leads to a high variety
of algorithms, ranging from linear programs to Lasso-
derived algorithms. In total, dozens, if not hundreds of
algorithms have been proposed, each one exhibiting spe-
cific features (speed, parallelization, accuracy, invariance
to noise, specific constraints such as positivity, etc). Sec-
tion 6.3 details the principle of a toy algorithm and char-
acteristics of several algorithms benchmarked for this
work.

For most of the reconstructions, we used the gen-
eral purpose `1- magic routines (Emmanuel Candes and
Justin Romberg, 2005) for their speed of reconstruction
and ease of use. We also used the SPIRALTAP algorithm
(Harmany, Marcia, and Willett, 2012). This algorithm
specifically incorporates a Poisson likelihood in the op-
timization criterion and enforces positivity of the recon-
structed signal, making it particularly suitable for imag-
ing purposes. We developed a port in Python of the
original Matlab® code (see Section 6.7).

1.5 Sparsifying transforms and dictionary
learning

1.5.1 How to engineer sparsity: sparsifying ba-
sis

The theory and algorithms presented above provide both
theoretical guarantees and empirical evidence that sig-
nals can be recovered (decompressed) from much less in-
formation than usually required by the Shannon-Nyquist
sampling theorem. The power of this theory is that it
makes only one asumption on the measured signal: its
sparsity.

Now looking at traditional microscopy imaging (see
for instance Figure 3a), it is clear a major part of the
image is dark, and one can say that the image is sparse
in a sense. However, it turns out that such a "sparse"
image is not amenable to compressed sensing. Indeed,
whereas Figure 3a is at most approximately 50 % sparse,
compressed sensing usually deals with signals that are >
90 % sparse.

This lack of sparsity might be a major hurdle to apply
compressed sensing to microscopy signals. Fortunately,
it turns out that:

1. If the signal has a sparse representation in some
known basis, all the compressed sensing theory ap-
plies with very little modification.

2. One can show that an uncertainty principle holds
that states that a signal cannot be spread out in all
of its representations.

These properties are briefly examined from a theoret-
ical standpoint in Section 6.4. They can be interpreted
as follows: even though the signal one want to acquire is
not sparse, it is very likely that there exists a basis that
transforms it into a sparse signal. Once this sparsifying
transform D has been found, the compressed sensing
problem can bery easily be adapted to suit a sparsifying
transform:

Assume that for an input vector x (of sparsity ||x||`0 =

s, but not necessarily a sparse signal) there exists a
known basis D such that x′ = Dx of sparsity ||x′||`0 = s′

is sparse enough for compressed sensing (s′ � s). A
compressed signal y is acquired using a measurement
basis A. One can then define a "surrogate" sensing ma-
trix A′ such as A′ = AD and apply a compressed sensing
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reconstruction algorithm to recover the sparse vector x′

from y, knowing A′, that is, solve the problem:

min
x′
||x′||`0 s.t. ADx′ = y

Finally, a simple change of basis allows to bijectively
switch to x. Such a generalization of compressed sensing
is better vizualized by Figure 5.

DA

x

x'y

Figure 5: Compressed sensing with a sparsifying basis. Assume
that the original vector x can be decomposed into the matrix prod-
uct of a known basis D and an (unknown) sparse vector x′. In
this setup, a compressed sensing reconstruction algorithm can be
applied: one can recover x′ from the measured y. Finally, the non-
sparse signal x can be recovered by a matrix product: x = Dx′.
(adapted from Baraniuk, 2007)

Here follow two comments:

1. Do we need to measure differently? In contrast with
the measurement basis that has to be physically
implemented in the measurement setup, the use of
a sparsifying basis can be seen as a software trick
since any sparsifying basis can be applied once the
measurement has been acquired. This is a huge as-
set of this method, because the sparsifying basis can
be optimized without the constraints of the physical
setup.

2. Examples of sparsifying basis. Many sparsifying
bases have been introduced, following the results
derived from wavelets theory: Discrete Fourier
Transforms, curvelets, etc. In the domain of mi-
croscopy, little information has been published, al-
though Studer et al., 2012 used a traditional wavelet
transform as a sparsifying basis.

1.5.2 Dictionary learning: beyond sparsifying
basis

Notice that the sparsifying transform doesn’t need to be
restricted to a basis, and frames such as dictionaries can
also be used. Learned dictionaries is a machine learning

approach that allows to learn an ad-hoc sparsifying dic-
tionary from sample data. It has proven particularly suc-
cessful when no sparsifying transform can be "guessed"
by simply looking at the data. Section 6.4 details the
dictionary learning problem.

Several algorithms have been published to perform
dictionary learning. The most famous is probably K-SVD,
(described for instance in Elad, 2010).

However, when employed with images, algorithms
that enforce a positive dictionary (constituted only by
positive elements) have been shown to give better per-
formances. Such algorithms fall onto the category of
non-negative matrix factorization (NMF). An efficient al-
gorithm is described in Lee and Seung, 2001, and the tra-
ditional implementation is criticized and discussed in Le
Roux, Weninger, and Hershey, 2015. The optimization
problem solved by NMF is simply, for X = [x1, x2, . . . , xk]

positive vectors:

min
D,Γ
||X −DΓ||2F s.t. ||Γ||0 ≤ η,∀i and D ≥ 0

1.6 Input data

In addition to the images directly acquired in the com-
pressed sensing setting (which will be presented in de-
tails in Section 3.3.3), the following datasets were used.

1.6.1 Simulations

Noiseless images We first performed simulations on
ideally sparse images. These images consist of a few
non-zero, uniformly distributed pixels on top of a dark,
zero-valued background, as depicted in Figure 6a. The
non-zero pixels have a mean value of ∼ 100. Of course,
these images are very far from a real life images (such
as Figure 8b). However, with such images, we aim at
simulating the output after application of a sparsifying
transform, thus operating in the intermediate domain
described above and in Section 6.4.

Noisy images To first assess the sensitivity of the
reconstruction algorithms to noise, we produced noisy
counterpart of each noiseless image. To do so, Gaussian,
additive noise and Poisson noise were added to the noise-
less signal. The magnitude of the Gaussian noise was
progressively varied in order to produce a SNR (signal-
to-noise ratio) varying between 0.2 and 10.
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a.

b.

Figure 6: Simulations of ideally sparse images (a). noiseless image,
(b). same image with noise added, with a SNR of ∼ 1. SNR is
reduced due to the presence of Gaussian additive noise, and the
signal is also contaminated by Poisson noise, (inset) zoom on a
40× 30 pixels region containing 3 non-zero elements.

1.6.2 Beads

As a first implementation step, the first acquisitions were
performed on fluorescent beads. When scattered on a
coverslip, the beads provide very bright, high signal-to-
noise ratio signal and most importantly show little pho-
tobleaching (Figure 7). Such signal is ideal to calibrate
the method for two reasons:

• The bead signal is very stable, thus the camera will
measure exactly the same object over the acquisi-
tion.

• Beads are point/PSF-like features, which should be
near-optimally acquired using a Fourier basis.

1.6.3 Live samples

As a biologically-relevant sample, developing fly embryos
were imaged by Mustafa Mir in 3D over time. The
strain used for imaging expresses a fluorescently labelled
version of the DNA-associated protein histone-2B (H2B
fused to a green fluorescent protein or H2B-GFP). This

allows to follow the chromosomes and the cellular divi-
sions during the early development of the fly embryo.

Early development of the fly embryo is a highly dy-
namic process, where synchronized cellular divisions oc-
cur every ∼ 15 minutes. Furthermore, during these di-
visions critical developmental events occur during which
short-lived, embryo-scale protein gradients form and
progressively refine the morphology of the embryo (Gar-
cia et al., 2013).

Figure 7: Sample images of beads acquired in the direct, uncom-
pressed mode. This 256x256 pixels image acquired using a 10 ms
exposure time and is extracted from a 3D stack. Beads seem to be
lined vertically: this corresponds to a profile view of the coverslip.
Off-focus beads appear with a halo whereas in-focus beads appear
as sharp and intense spots. Pixel size: 100 nm (whole picture:
25.6 x 25.6 µm).

So far, most of the obeservations on the fly embryo
are performed using a confocal microscope, a technique
that achieves sectioning by scanning a conjugated pin-
hole over the whole sample, resulting in a high dose of
light at sample and photodamage. Such high intensity
at the sample is usually a limiting factor for imaging and
overexposed flies tend to develop developmental defects
in later division stages. Thus, techniques such as the
lattice light sheet microscope combined with a reduced
exposure time thanks to a compressed sensig acquisition
mode could have valuable and direct applications.

Finally, the choice of a H2B -labelled fly is a particu-
larly interesting sample because it features two visually
and functionally highly distinct chromatin states: inter-
phase and mitosis:

• during interphase, the chromosomes are decon-
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densed and no individual chromosome is visible,

• during mitosis, the fly chromosomes are condensed
and form clearly distinguishible "blobs" with a high
contrast with respect to the background. These
chromosomes can be followed over time, allowing
to probe for the spatial consistency of the recon-
structions.
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Figure 8: Subregion of a developing fly embryo during mitosis
imaged with the lattice light sheet microscope. At that develop-
mental stage, nuclei stand at the surface of the embryo and cellular
divisions are synchronized. (a). scheme used to perform the ac-
quisition. At each time point, a series of images is taken in the
(x, y) plane and at various z positions, forming a 3D-stack, (b).
sample image in the (x, y) plane, four dividing nuclei are clearly
visible (circular features on the first diagonal of the image). inside
those nuclei, condensed chromosomes are clearly visible. Yellow
lines mark the positions in y of the sections presented in (c). sec-
tions in the (x, z) plane of the image presented in panel (b). Image
width: 51.2 µm. Images by Mustafa Mir.

Fly embryos were prepared for imaging and imaged
using the lattice lightsheet microscope. 512x512x101

pixels 3D stacks were acquired at a few tens of seconds

time step, 101 2D images (parallel to the (x, y) plane)
were acquired per 3D stacks with an exposure time of
100ms/2D plane. A sample image is shown in Figure 8b
and a view of an (x, z) plane is shown in Figure 8c.

(x, y) resolution is approximately 300 nm. axial, z res-
olution is approximately 400 nm. 100 to 300 planes from
the 3D stack are located approximately 200 nm apart,
in order to fulfill the Shannon-Nyquist criterion, where
the PSF bandlimits the signal. Images were acquired as
16 bits/pixel, resulting in sevral gigabytes of data per
movie (approximately 100 MB per 3D stack).

After acquisition, these images were used as a refer-
ence to eveluate the performance of compressed sensing
algorithms. To do so, the images were compressed in z
(see details in Section 2.1) using a predefined measure-
ment matrix and additive Gausssian and Poisson noise
were added to the compressed images. After decom-
pression using a compressed sensing reconstruction al-
gorithm, the images could then be compared with the
original reference.

2 Results – Simulations

Prior to the implementation of a physical setup to ac-
quire compressed images, we perform a series of simula-
tions and computations in order to demonstrate the the-
oretical feasibility of such system under realistic speeds
and noise levels.

2.1 Several schemes can be adapted to the
lattice lightsheet microscope

To find a scheme that can actually be implemented into
a physical system is a traditional challenge in the com-
pressed sensing field. Indeed, contrary to acquiring a
big dataset and then compressing it, to acquire data in
a compressed manner requires to design a sensor/sensing
mode that can actually sense in a basis that is incoherent
with the signal naturally sparse basis. Such a challenge is
a major limitation in imaging, where the signal-to-noise
ratio is usually limited (Willett, Marcia, and Nichols,
2011).

First, achieving compression in the (x, y) domain
seems hardly achievable, and there seem to be no easy
solution for the lattice lightsheet since the whole camera
sensor is conjugated with the sample. Indeed, in such
a setting, each individual (x, y) position on the sample
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is uniquely mapped to a (x, y) position of the detector,
preventing us from acquiring an incoherent linear mea-
surement in this plane. Note that if we were using a laser
scanning confocal microscope, compression in the (x, y)

plane could have been possible by the use of a digital
micromirror device – DMD, see Ye et al., 2009.

However, for 3D acquisition, one can imagine a com-
pression in z, the third dimension, allowing to perform
compression in one dimension:

2.1.1 Implementing a 1D compression. . .

Indeed, one can design a scheme in which the third di-
mension (z) of a 3D stack is acquired in a compressed
fashion. Such an acquisition is possible thanks to two
features of the microscope:

• The z-piezo, that allows the user to manually com-
mand the z position of the stage/sample.

• The AOTF that allows to precisely tune the light
intensity.

It is then possible to design a scheme, depicted in Fig-
ure 9, where during each measurement (that is, camera
frame) the stage sweeps through the whole sample while
the AOTF shows a specific, user-defined pattern: a vec-
tor of the measurement matrix. For instance, assuming
a Hadamard transform as the measurement matrix, Fig-
ure 10 jointly shows the position of the stage in z and
the illumination intensity.

Note that even though the data acquired is still 3D,
the compression only operates in the z dimension and at
each (x, y) position corresponds a 1D compressed signal.
This signal can be seen as independent from the other
adjacent 1D signals. They thus can be reconstructed
independently, allowing for a massively parallel recon-
struction scheme.

Furthermore, note that in this dimension, one has an
almost absolute freedom of choice with respect to the
measurement matrix, the only constraints that apply are
the following:

• the measurement matrix has to be positive,

• its variation in intensity should be compatible with
the AOTF speed

• it should not have a higher resolution than the PSF.
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Figure 9: Comparison between the traditional mode to acquire 3D
volumes and the compressed sensing mode. (a). in the traditional
imaging scheme (left), each camera frame contains the information
from a given z position whereas in the compressed sensing mode
(right) each camera frame conveys part of the information over the
whole z stack. Such spread of the information reflects the inco-
herence property of the measurement matrix, (b). comparison of
the two imaging schemes: (top) standard scheme, at each camera
frame only one position is illuminated (bottom) at each camera
frame, a selected number of frames is illuminated with a given
light intensity in a way that the final intensity pattern forms an
incoherent basis. Here a Hadamard transform has been pictured
as the measurement matrix.

Regarding this last point, we know that the signal
(such as the image of a sample) coming through an ob-
jective is bandlimited (see Kim, 2011). Thus, the con-
ditions to apply the Shannon-Nyquist theorem are full-
filled and one can fully sample the signal at a frequency
twice the highest frequency of the signal, that is at a
step of half the full-width at half maximum of the PSF.
Thus, there is no need to apply measurement matrices
that have a resolution higher than the order of the PSF
width.
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Figure 10: Comparison of the implementation of the tradi-
tional imaging scheme with a compressed sensing mode (using
a Hadamrd transform as the measurement matrix). (a). tradi-
tional imaging scheme. To image a 4-plane 3D stack, the camera
successivelly exposes four times at four different positions, (b).
implementation of a Hadamrd transform in z: during each camera
frame (taking the same camera exposure time as the traditional
scheme), the z-piezo scans the whole sample. At the same time,
the AOTF modulates the light intensity. The light pattern is such
that a Hadamard transform matrix is applied as a measurement
matrix (depicted in (c).).

2.1.2 . . . seems compatible with the hardware
setup. . .

Let us review now the physical constraints that might
apply to the setup and possibly hinder its practical im-

plementation. In order to apply a measurement matrix
with comparable exposure times as the standard scheme
(for instance, 20 ms/frame over a 50 µm thick sample,
that is 150 frames):

1. The AOTF should be able to closely follow a pattern
(it should be fast and accurate enough). Ideally,
its update frequency should be > 1000 times the
exposure time, that is 50 kHz,

2. The z-piezo should be able to scan fast enough (50
µm in 20 ms, and thus oscillate at 25 Hz)

3. Synchronization between the z-piezo and the AOTF
should either be extremely good (tens of µs) or ac-
curately measured in order to be software corrected.

A quick review of the datasheets shows that such a
compressive scheme seems to be compatible with the
hardware isntalled on the lattice light sheet. A more ex-
tensive analysis of the hardware limitations of the setup
is detailed in section 3.3.3.

2.1.3 . . . and allows the implementation of a
wide range of sensing matrices

A very interesting feature of this imaging scheme is that
almost any (positive) measurement matrix can be ap-
plied to the sample.

However, the positivity constraint is an important re-
striction. Indeed, many of the traditional sensing ma-
trices cannot be applied to the imaging. For instance,
Gaussian measurement matrices have negative values
and thus are not suitable for imaging. Furthermore,
although it is always possible to offset a matrix such
that it has no negative coefficient, this usually strongly
degrades the theoretical properties of the matrix. In-
deed, adding an offset w to a matrix A is equivalent to
translating all the measurement vectors by the vector
w× (1, 1, . . . , 1). As w grows, the initial values of A be-
come negligible and thus all the columns of the matrix
become more and more colinear. This effect can also be
seen by recomputing the RIP in the presence of an off-
set and to show that the measured sparse vectors are no
longer orthogonal.

Bernoulli and uniform basis Fortunately, the so-
called Bernoulli basis (where each entry of the matrix fol-
lows a Bernoulli law of parameter p ∈ [0, 1]) and uniform
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basis (each entry follows a uniform law: aij ∼ U ([0, 1)))
are matrices that provide good guarantees.

Fourier basis Another approach consists in taking a
truncated and offset discrete Fourier transform (in an
approach similar to E.J. Candes, J. Romberg, and T.
Tao, 2006). An interesting property of this approach is
that a simple transform allows to switch from the offset
Fourier basis to the traditional Fourier signal. Then, the
compressed signal can be seen as a bandlimited Fourier
series decomposition, thus providing a guarantee on the
reconstructed signal: the reconstruction from the algo-
rithm cannot be worse than the signal recovered from
the bandlimited Fourier transform. From an empirical
standpoint, the worse reconstructions we could achieve
with the compressed sensing solver were always of better
quality than taking the inverse Fourier transform from
the bandlimited signal. Furthermore, Fourier matrices
show minimal coherence with the Dirac basis, making it
particularly suitable to observe Dirac-like features in the
direct domain. Due to these theoretical guarantees, un-
less specified, acquisitions and simulations are realized
with a Fourier basis.

Expander graphs Yet another orthogonal ap-
proaches can also be undertaken. It relies on the
construction of sensing matrices derived from expander
graphs (Raginsky, Willett, et al., 2010, Raginsky,
Jafarpour, et al., 2011), that show interesting properties
for imaging. However, after a closer look at their design,
they seem to be answering another question. Indeed,
they ensure a useful energy-conservation property (the
energy received by the sample is constant for each
measurement). Unfortunately, when modulating the
laser power with the AOTF, the energy at the sample
is no longer constant, making schemes derived from
such graphs are less suitable for implementation in the
lattice light sheet.

Matrix optimization Finally, instead of postulating
a measurement matrix, one can also derive it from the
dictionary used for the reconstruction. Such an approach
ensures that the couple (sensing matrix, dictionary) has
maximal incoherence, giving the best theoretical guar-
antees. Such a method is called matrix optimisation
and several methods have been proposed (Elad, 2006)

to achieve it. A recent method performs matrix op-
timization under positivity constraint (Mordechay and
Schechner, 2014).

However, although promising, we were unable to ob-
tain optimized sensing matrices using the code provided
by these last authors.

50 meas .
32 meas .
20 meas .

a.

b.

c.

bernoulli
fourie r_rnd
fourie r
expander
uniform

Sparsity 0.7

Sparsity 0.9

Sparsity 0.94

Sparsity 0.98

M
SE

#measurements
0 20 40 60 80 100

1

0

1

0

1

0

1

0

1

00 20 40 60 80 100

Si
gn

al

x position

Figure 11: Sparse signals can be recovered in a noiseless setting.
Reconstructions are performed on a 1D vector of length 100 whose
sparsity is varies from 70% to 98%, (a). Sample signal of sparsity
90% (black, 10 nonzero components) and its reconstruction from
a decreasing number of measurements using a Bernoulli measure-
ment matrix. Reconstruction is exact for 32 and 50 measurements.
With 20 measurements, significant errors are visible. (b). mean
square error (MSE, computed as

∑100
i=0(x−x̂)

2∑100
i=0 x

2 ) as a function of the
number of measurements for various measurement basis (colors)
and four different sparsities of the input signal (top: 70%, middle:
90%, middle again: 94%, bottom: 98%), (c). a phase transition
is visible when the `2 reconstruction error is plotted as a function
of sparsity and the number of measurements, gray level represent
the MSE. Reconstruction made with SPIRALTAP (although the
results are similar using a different algorithm). Panels (b) and
(c) represent the average over 10 replicates. bernoulli: Bernoulli
random matrix used as measurement matrix, fourier: Fourier ma-
trix (10 first basis vectors), fourierrnd: 10 vectors from a Fourier
basis, sampled at random, expander: measurement matrix based
on expander graphs, uniform: uniform random matrix.

In Figure 11, we present on a toy reconstruction prob-
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lem without noise the performance of several measure-
ment basis at various sparsities of the input signal and
the number of measurements. It is clear that the sparser
the signal the better the reconstruction, and obviously,
the higher the number of measurements (and thus the
lower the compression factor) the lower the mean square
error (computed as

∑100
i=0(x−x̂)2∑100
i=0 x

2
).

Several conclusions can be drawn from this first sim-
ulation:

• Note that a phase transition occurs in the bottom
panel (Eldar and Kutyniok, 2012, chapter 7), that
is there is a clear threshold at which the reconstruc-
tion is exact (MSE < 10−10),

• High compression ratio can be achieved, provided
that the signal is sparse enough. For instance, it
seems that a 10 times compression can be achieved
provided that the signal is ≥ 95% sparse. In the
following, we will stick to a compression ratio of 10
as a target.

• In such an artificial setting, it is difficult to assess
which measurement matrix will be the most suitable
for imaging.

2.2 Gaussian additive noise has a limited
impact on reconstruction

We now turn to a case where we apply noise to the mea-
sured signal and evaluate the sensitivity of the recon-
struction algorithm. We start from the same setting
as in the previous section and add additive Gaussian
noise in order to match a predefined SNR (defined as
ρ = E(X)√

Var(X)
).

Note that since the compressed sensing noise applies in
a domain that is incoherent with the original sample, it
might be difficult to calibrate the SNR. However, due to
the fact that this specific noise is additive, an analytical
relation can be computed to match the SNR in the direct
and the projected domain.

Indeed, assume a given SNR ρ in the direct domain for
a signal X̃ of length n contaminated by additive gaussian
noise of standard deviation σ, and compute it as ρ =

E(X)√
Var(X)

= E(X)
σ , that is:

X = X̃ + σN , with N ∼ N (0, 1)

Trivially, one has Var(X) = σ2. Now, consider the
variance of the measured signal Y = AX (with an neat
abuse of notations regarding that N is a Gaussian vec-
tor):

Y = AX = A(X̃ + σN) = AX̃ + σNA

=⇒ 〈Var(Y )〉 =
σ2

m2

m∑
i=1

n∑
j=1

a2
i,j =

σ2

m2
tr(ATA)

This implies that for a signal of mean value E(X) = µ

in the direct domain and to achieve a given SNR of ρ, one
can, as a first approximation add noise in the projected
domain with a variance σ2

m2 tr(A
TA).

Figure 12 presents the empirical performance of one
reconstruction algorithm in noisy conditions. In contrast
with Figure 11 the chosen vector has length 200. Several
conclusions can be drawn:

• it is possible to reconstruct accurate signals in noisy
conditions (SNR < 10),

• as expected the MSE decreases with the number of
measurements,

• furthermore, when the MSE is plotted as a function
of the noise term σ instead of the SNR, the error
exhibits a linear scaling with σ, compatible with the
guarantees of reconstruction under additive noise.

This analysis, although useful to demonstrate the ap-
plicability of the method, do not give any clue on how
it compares with noisy images acquired in the direct do-
main. To perform such comparison, we have found that
relying only on means square error sometimes provided
unfair results (often in favour of the compressed sensing
approach). Indeed, many criticisms have been expressed
against MSE in the imaging field (see for instance Zhou
Wang and Bovik, 2009). We thus try to present more
ad-hoc metrics when needed, altogether with the raw
images for visual inspection.

To assess the relative impact of noise in the direct
domain vs. noise in the transformed domain, we pro-
ceed as follow (principle of this simulation is depicted in
Figure 13):

1. A noiseless 2D image is generated as described in
section 1.6.1.

2. For a given SNR, either additive Gaussian noise is
added in the direct domain, or the corresponding
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noise level is set in the projected domain.

3. The projected image is decompressed and the out-
put of the algorithm is compared with its counter-
part with a matched noise in the direct domain.

4. The process is repeated using various SNR
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Figure 12: Performance of the `1-magic reconstruction algorithm
under noisy measurement. SNR correspond to the equivalent noise
level in the direct domain. (a). Sample reconstructions of a signal
of sparsity .97 (bottom, blue) when measured with increasing SNR
(green, red and azure curves), (b). Evolution of the mean square
error as a function of the SNR in the direct domain for signals of
different sparsities and various number of measurements. SNR is
computed as the peak-SNR (PSNR).

The results of the simulation are presented in Fig-
ure 14. We used two metrics. The first is sim-
ply the PSNR (peak signal-to-noise ratio, defined as
PSNR(x, x̃) = 10 log10

max(x)2

MSE(x,x̃)). PSNR is expressed
in decibels (dB). Using this metric, one can see that
the compressed sensing approach seems to clearly out-
perform the blurry result by significant margin (several
decibels), and the higher difference aappears in low-SNR
regions, which precisely are the region of interest in the
case of fast imaging.

However, and maybe obviously, this approach is very
unfair to the blurry image. Indeed, as seen above in Sec-
tion 1.3, compressed sensing acts as a denoising routine,

thus achieving artificially high PSNR on sparse samples,
whereas an image contaminated by Gaussian noise will
exhibit very low PSNR.

To tackle this issue, we propose a different metric for
the specific purpose of this experiment. Since the input
image is binary, we seek how many non-zero pixels are
accurately recovered. A simple way to define a recovered
pixel is as follows: assume there are ν non-zero pixels in
the original image. In both the noisy images, take the
ν pixels of higher intensity and see how many of them
matches the non-zero pixels in the original image. The
results of this approach are depicted in Figure 14b.

Figure 13: Procedure to compare the effect of noise applied in
the direct vs. the projected domain: (a). a binary 2D image
is generated. Then (b). two mutually exclusive transformations
are applied, either (i). Gaussian noise is applied in the direct
domain or (ii). the image is compressed ten times in one of the
dimensions and a matched additive Gaussian noise is applied be-
fore reconstruction. Finally (c). the images resulting from the
two processes can be compared, either on their general appear-
ance or on selected subregions. Here a 10 times compression has
been applied. matched SNR is 1.

16



Note that this approach is now more fair to the addi-
tion of Gaussian noise. Indeed, we consider that if the
pixel has a higher intensity than the background, then it
can be recovered. Note that since the features we want
to recover are isolated pixels, the selection of the pix-
els of maximum intensity is the best guess one can have
(this is a maximum likelihood configuration).

Now, this method slightly disadvantages the com-
pressed sensing approach. Indeed, it might happen that
the reconstructed image shows exactly the right pattern,
but one non-zero pixel appears slightly blurred over two
adjacent positions, leading to one of the two adjacent
pixels of high intensity to be counted as a false detec-
tion. This is particularly visible in the high-SNR portion
of the curve, where the reconstructed curve never reaches
100% for this specific reason.

Finally, in the low-SNR region, a very interesting fact
appears: the compressed sensing method captures more
spots than the acquisition in the direct domain, suggest-
ing that compressed sensing could show competitive re-
sults with highly noisy signals where traditional imaging
performs poorly.
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Figure 14: Performance of compressed sensing reconstructions
compared with traditional imaging under noisy conditions. Two
sets of noisy images with various SNR are generated, as described
in Figure 13. (top) PSNR as a function of the SNR, the blue
curve is the compressed sensing reconstruction and the green curve
imaging in the direct space, (bottom). Same experiment, but the
metric is now the proportion of bright pixels actually recovered.
Reconstructions of a 10 times compressed signal.

Conclusion Using these simple simulations on binary
images, we were able to get a working example and

competitive reconstructions in noisy settings, possi-
bly including where direct imaging is made difficult
by the noise. These binary images are very far from
biological samples, but we chose such simplified im-
ages as proxies for of an intermediate representation
when an ad-hoc dictionary has been learned. In
the next section (2.3), we turn to optimizing com-
pressed sensing together with dictionary learning.

2.3 Dictionary learning improves recon-
structions

Recall Figure 3. Biological images do not match the
sparsity requirements we exhibited in our previous sim-
ulations: although biological images are at most ∼ 60
% sparse, our simulations showed interesting results for
>95% signals. This remark justifies the use of dictionary
learning to find an ad-hoc sparsifying transform.

2.3.1 Dictionary learning provides significantly
improved performances over inverse
Fourier transform

In the case where the measurement matrix is a Fourier
basis, there are two, non-equivalent ways to reconstruct
an image:

1. Use a compressed sensing reconstruction algorithm,
as described above,

2. Set the unmeasured coefficients to zero and perform
a traditional inverse discrete Fourier transform.

The latter method can formally be seen as a lower
bound on the quality of reconstruction. We thus com-
pare the performance of a compressed sensing, with and
without dictionary learning with respect to a reconstruc-
tion derived from inverse discrete Fourier transform, as
depicted on a sample image of a dividing fly embryo in
Figure 15.

Traditional MSE are presented together with sample
reconstructions and absolute errors for visual inspection
in Figure 16. Several conclusions can be drawn:

First, the bandlimited signal reconstructed by inverse
Fourier transform clearly is a degraded version of the
original image, as shown by the MSE between the iFFT
reconstruction and the original (Figure 16a, left).

Second, even without a dictionary, the compressed
sensing reconstruction algorithm outputs an image rela-
tively similar to the original, having its high frequency
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features adequately resolved. Interestingly, this recon-
struction ends up with a very high MSE. Indeed, the
global background is not properly reconstructed, which
leads to an accumulation of small error ters, dramati-
cally increasing the MSE. Furthermore, this method in-
troduces several artifacts that appear as shadow chro-
mosomes (that is chromosome-like features where there
was nothing in the initial image). These observations
lead us to always proceed with a visual inspection of the
results rather than relying only on the MSE.

a.

b.

iFFT +dictc.

Figure 15: Pipeline to assess the performance of dictionary learn-
ing. (a). original image used for reconstructions. Note the
feature-rich region of the nuclei, where individual chromosomes
are visible, and the top-right region with less defined characteris-
tics, (b). compressed version of the image. A 10x compression
is applied in the vertical dimension using a Fourier matrix. 90%
of the data is thus discarded, and (c). three reconstruction algo-
rithms are applied: (iFFT) the discarded coefficients are assumed
to be zero and an inverse Fourier transform is performed, (`1).
traditional compressed sensing reconstruction is applied or (`1 +
dict). a dictionary is used for reconstruction. The dictionary has
been learned on a set of ∼ 10 planes coming from this time point
and another time point further in time. Field dimensions: 51.2 x
51.2 µm. 100 planes were acquired with a ∼ 200 nm step.
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Figure 16: Assessment of the benefits of dictionary learning. (a).
Mean square error of three different reconstruction techniques, fol-
lowing the protocol detailed in Figure 15, (b). sample image used
for this figure and zoom on a features-rich region (nucleus), (c)-
left. sample reconstructions using the three methods and (right).
absolute error. The colorbar has the same amplitude as the input
image. The compressed sensing images were obtained using `1-
magic. The dictionary used for reconstruction had size 1024x512
(two times overcomplete dictionary). Dictionary learning algo-
rithm: NMF.

Finally, the reconstruction with a dictionary achieves
by far the best result, with a MSE dramatically lower
than the other version (corresponding to several dB),
capturing most of the features of the original signal. Fur-
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thermore, in contrast to the two other reconstructions,
dictionary learning show little or no detectable pattern
in the absolute error (the 2D image X− X̂), which indi-
cates that little artifacts are introduced by the method,
despite the fact that its MSE is usually considered as
high.

In this first simulation, we did not investigate the ef-
fects of tuning the dictionary learning parameters. In
the next section, we evaluate both the impact of the pa-
rameters for dictionary learning and the robustness of
the outputs.

2.3.2 Robustness of reconstructions performed
with a learned dictionary

A justified (and inavoidable) drawback of dictionary
learning is that it is a data-dependent procedure, thus
subject to overfitting. Intuitively, features that were
part of the training set are much more likely to be ac-
curately reconstructed than features resembling nothing
like the training set. Then, one wants to assess the ro-
bustness of the reconstruction when dictionary learning
is applied.

Here, we evaluate the evolution of the MSE for recon-
structions performed along several axes of a 3D+time
movie, as emphasized in Figure 17. First, a dictionary
is learned by picking sample images from one particular
3D frame. We then evaluate the evolution of the MSE
as we move farther from the sample images, either in
time (reconstruct 3D volumes farther in time), in space
(pick planes on the same stack but farther in z), or in a
combination of both.

z

y x

t

...
r1
r2 r3 r4

Dictionary sample frame

Reconstruction frame (MSE computed)

t0 t1 t2 t3 t4 t5

Figure 17: Procedure to assess the robustness of reconstructions
performed using dictionary learning. For 3D+time acquisitions
(represented as a series of 3D stacks), a specific timepoint is chosen
to learn a dictionary (here, t1) and some frames are used to learn
the dictionary (pictured in orange). Then, several frames (pictured
in blue-green) are used to assess the quality of the dictionary: the
chosen frame is compressed 10 times and reconstructed using a
Fourier basis using the `1-magic algorithm and the dictionary. A
MSE is computed. Then, the algorithm moves to a frame farther
from the sample frames used for the dictionary learning. Move can
be either in space (from r1 to r2, switching z position), in time
(from r2 to r3, changing timepoint) or both (moving from r1 to
r3). The procedure is repeated for several dictionaries.

Results of this simulation are summarized Figure 18.
Several points are worth noting:

• As the size of the training set increases, the overall
MSE tends to decrease, but seems to reach a plateau
for high numbers of samples. Similarly, MSE tends
to decrease as the number of atoms increases.

• At the timepoint t = 0s, that is the timepoint corre-
sponding to the training set for the dictionary learn-
ing, one can see a drop in the MSE at some of the
frames used for the training.

• However, this effect remains highly localized (it
spans very few frames, especially for dictionaries
learned from a high number of samples) and it does
not happen at every frame of the training set.

• Furthermore, for dictionaries built from ≤ 10 sam-
ples, the MSE is dominated by an increasing trend
over the stack (reflecting the fact that the bottom
of the stack is harder to reconstruct) rather than by
dictionary-specific artifacts.

• Moreover, as one moves further in time (t = 13s,
5 3D stacks later), the drops corresponding to the
training set are no longer visible, confirming the
fact that the artifacts due to the closeness from the
training set also quickly vanish in time.

• Finally, as one moves either in space of time, the
worst MSE values are still in the acceptable range,
and do not represent a dramatic deterioration com-
pared to the frames close to the training set.

Conclusion In this subsection, we demonstrated that
the implementation of dictionary learning at the
same time robustly improves the reconstruction
quality without adding too many artifacts. On the
downside, the movie considered for reconstruction
still shows similar features (mitotic chromosomes),
and thus the robustness test do not assess for totally
different features.

2.4 A pipeline for full 3D reconstruction

Once all these small scale simulations have been
achieved, one can then scale the analysis in order to
process acquired movies, which is a much higher amount
of data than what has been processed for the previous
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Figure 18: Robustness of the reconstruction when using dictionary learning. Each panel represents the mean square error (MSE) of
a reconstructed frame at a specific timepoint (columns), z position in the stack (x coordinate) and using a dictionary built from
a given number of samples (rows) and with a given number of atoms (curves) . Dictionary is always built by taking frames from
timepoint t = 0s. The frames used for dictionary learning are evenly split across the whole z stack, their position is marked by the
red ticks. See Figure 17 for more details about the reconstruction and Figure 31 for sample images.

simulations. In order to deal with such scaling up, we
implemented a simple processing pipeline. The final
aim is to be able to reconstruct 3D+time movies in a
reasonable time, with minimum user input.

2.4.1 Pipeline

To adress this need, we designed a simple pipeline. This
pipeline can either run on a standard machine or on

a HPC cluster powered with the Simple Linux Util-
ity for Resource Management scheduler (SLURM, Yoo,
Jette, and Grondona, 2003). It mixes bash, Python

and IPython/Jupyter 2 scripts and achieves dictionary
learning and reconstruction. An outline of the whole
pipeline is depicted in Figure 19.

2IPython/Jupyter is a popular web-based frontend for Python
(and many other languages). It can be downloaded from http:
//jupyter.org.
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Due to the structure of the problem, it is possible
that a parallelization on GPU units/cluster be benefi-
cial. Indeed, since each small scale, 1D z-section is re-
constructed independently of the others, and that the
measurement matrix is the same for each 1D section, for
a 512x512x201 pixels image, > 260 k parallel reconstruc-
tions are launched. This architecture seems particularly
suitable to be ported on a GPU. However, we didn’t have
time to investigate such approach.

1. Assemble a dictionary
From pre-existing data
Or from a newly acquired dataset
On an analysis computer

2. Perform microscopy 
    acquisition

3. Image reconstruction

~ 1 hour

~ 1 to a few
days

~ 1 week

On a high performance cluster

Figure 19: Pipeline to acquire and reconstruct compressed sensing
images/movies. Dictionary can be assembled either from already
available datasets or from a preliminary acquisition obtained in
the direct, uncompressed domain. The whole pipeline can be run
in one to two weeks.

2.4.2 Reconstructions

As a proof of concept of the pipeline, we artificially com-
pressed and reconstruct a 50 3D volumes movie spanning
one hundred and thirty seconds of the development of a
fly embryo. Each 3D volume contains 512x512x101 vox-
els. Each 3D stack was compressed along the z axis by
a factor of ten using a positive Fourier basis, leading
to 50 3D volumes of dimensions 512x512x10 voxels. A
1200 atoms dictionary was learned from the 20 frames
taken from the first 3D volume of the uncompressed
acquisition. Reconstruction was eventually performed

on a cluster located in Pasteur Institute, Paris, France3

and took approximately four days, leading to a ∼ 5 GB
3D+time TIFF movie4.

Sample slices are presented in Figure 20 and some im-
portant comments can be made:

1. the reconstruction resolution is fairly consistent
across the whole movie, further validating the use
of the dictionary learning algorithm,

2. Feature-rich regions such as nuclei are accurately re-
constructed. Moreover, their reconstruction is con-
sistent both across space (moving in x or y) and
time, which indicates that the reconstruction is ro-
bust.

3. In the (x, y) plane, the resolution seems to match
the resolution of the input movie

4. On the downsides, in the z dimension, there seem
to be a non-isotropic degradation in the resolution,
especially in feature-rich regions (discussed further
in Section 4.3)

5. In addition, the reconstruction exhibits in z some
periodic components or stripes that contaminate
the signal.

Conclusion In this subsection, we demonstrated the
ability of a compressed sensing-based approach to
recover 3D+time movies from a ten fold compres-
sion ratio using an artificially (software) compressed
movie initially acquired with the lattice light sheet
during a traditional microscopy experiment.

3 Results – Hardware implementa-
tion

Althoug the reconstructions presented above seem
promising, the generated images were compressed post
acquisition. Indeed, to our knowledge, there is no hard-
ware that allows for compressed sensing microscopy,
and a hardware implementation has to be developed to
actually perform compressed sensing acquisitions.

3We used the computational and storage services (TARS cluster)
provided by the IT department.

4Low resolution visualizations can be found on this report web-
page.
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Figure 20: Sample planes from a 120 s reconstructed 3D+time movie of a dividing fly embryo. Two timepoints are presented, t = 0s
(left column) and at t = 100s, which correspond to a 40 3D volume time gap. For each plane the left picture is the reconstructed image
whereas the right one is the original. Two top panels: slices in the (x, y) plane, two bottom panels: slices in the (x, z) plane. Red
(resp. orange) dashed lines indicate the positions of the reslicing in the (x, z) plane (resp. (x, y)). The dictionary has been learned
on a set of ∼ 10 planes coming from this time point and another time point further in time. Field dimensions: 51.2 x 51.2 µm. 100
planes were acquired with a ∼ 200 nm step.

To begin with, the effectiveness of compressed sensing
microscopy by compressing the z dimension can only be
assessed when all the variability of the process has been
experienced. For instance, our simulations, even in a
noisy setting, assumed a predefined noise model, that is
only an approximation of the real-life noise. Also, the
influence of structural error was not assessed.

In this section, we review the schemes implemented
in the lattice light sheet and present some first results.
Then, we present an implementation in a widespread,
traditional epifluorescence microscope.

Also, at the time of writing, this implementation is
still in progress, and these results are only preliminary.
In the remaining two months of the internship, we will
build on top of these first results.

3.1 Lattice light sheet implementation

From a software point of view, the lattice light sheet
microscope is operated by a Labview®5 code that al-
lows to program the FPGA (a real-time, programmable
device: a field-programmable gate array), ensures the
synchronization between all the devices and ultimately
permits acquisitions.

An actual implementation of a compressed sensing
mode running at a reasonable speed requires real-time
capabilities that can only be reached in embedded de-
vices such as the FPGA. Indeed, the compressed sens-
ing mode was implemented as an addon sending specific
AOTF waveforms to the FPGA. Due to the high com-
plexity of the existing Labview® code, this implemen-
tation was realized by the company that developed the
software6. Figure 21 presents an overview of the addon,

5http://www.ni.com/labview/
6Colemantech, https://www.colemantech.com
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as visible by the end user.

3.1.1 Acquisition of reference images

One first step of high importance is to make sure that
one can acquire accurate reference images in the direct
domain, to compare with the output of the reconstruc-
tion algorithm. Two options are available:

• Use the standard 3D stack mode of the control soft-
ware,

• Perform an acquisition in the compressed sensing
mode and load an identity matrix as the measure-
ment matrix, thus mimicking the acquisition in the
traditional mode.
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Figure 21: Graphical User Interface (GUI) part of the LabView®
software used to control the compressed sensing mode. (a). The
user can load a custom measurement matrix from a CSV file. (b).
3D acquisitions parameters can then be specified. These corre-
sponds to formalism used in the traditional 3D stack formalism.
Translation into the waveform modulation is performed internally.
(c). the acquired compressed frames can then be vizualized, (d).
Command sequence sent to the FPGA.

We opted for the second options for several reasons.
The first one is that the gain (and then the output
power) of the AOTF is not the same in the traditional

3D stack mode and in the compressed sensing mode. In
the former mode, the AOTF is controlled through the
digital output of the AOTF and through a DC-DC con-
verter whereas in the latter, one has to use the analog
mode, since the intensity of the laser is modulated over
time. This mode does not make use of the DC-DC con-
verter.

Finally, the use of the identity matrix as a measure-
ment matrix allowed us to acquire reference samples that
can be compared one-to-one with the reconstructions.

3.1.2 Post-calibration of the measurement ma-
trix

A second calibration step is to ensure that the intensity
at the sample matches the measurement matrix. Dis-
crepancies in this process result in structural error and
can greatly impact the reconstruction quality.

Analysis of the reference documentations of the hard-
ware and software elements of the microscope helped us
to pinpoint potentially problematic devices. In the end,
it seems that only the z-piezo that moves the objective
in order to keep it confocal with the light sheet could be
a source of structural errors.

Indeed, to operate the compressed sensing mode as de-
scribed above requires to continuously scan the sample,
and thus oscillate at a ∼ 50 Hz frequency for a 10 ms ac-
quisition time per measurement (one measurement can
be made when the piezo stage goes up, the other when
the stage is going down). This frequency is close to the
maximal operating frequency of the piezo. Furthermore,
the objective is a little bit too heavy for the piezo, which
is likely to cause degraded performances.

Fortunately, the z-piezo provides an analog feedback
that allows to measure the error/delay to reproduce the
triangle waveform. The z-piezo voltage command and
its voltage response are shown in Figure 22a for various
acquisition times. One can see that for short acquisi-
tion times, there is a clear delay betweent the command
and the response. As a result, the intensity at sample
over the z dimension highly differs from the measure-
ment matrix, which in theory should prevent any com-
pressed sensing reconstruction.

Furthermore, the feedback from the z-piezo allows us
to derive a corrected measurement matrix that matches
the intensity at sample over time. Indeed, one can derive
a model to correct the sensing matrix:
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Consider what happens during one exposure frame.
For the sake of simplicity, and without loss of general-
ity, assume that the camera continually exposes between
t0 = 0 and t1 = 1. Also, assume that we are given m

measurement functions: (mi(t))1...m : [0, 1] → [0, 1] rep-
resenting the intensity applied at sample for measure-
ment i.
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Figure 22: Correction of the z-piezo latency. (a). The z-piezo
exhibit significan delay and distortion for short acquisition times:
(top) 100 ms/measurement, (middle) 20 ms/measurement (bot-
tom) 10 ms/measurement, the reason why the camera fires at ir-
regular times yet has tobe investigated (b). (top) sample Fourier
measurement matrix and (bottom) its calibrated counterpart for a
500ms/measurement acquisition. Note that the shift of each mea-
surement vector reflect the fact that the raw z-piezo feedback is
not exactly the same as the command, and such scaling error is
not accounted for in the present method.

Note that these functions can easily be discretized
to give back the traditional measurement matrix A =

(aij)i∈1...m,j∈1...n ∈ Rm×n used in the compressed sens-
ing setting:

aij =

∫ j+1
n

j
n

mi(t)dt

Here, the corrected measurement matrix Ã can be in-
ferred as a correction of the initial measurement matrix
A and the record of the z-position of the piezo (denoted
as z(t), t ∈ [0, 1]). Thus, it can be easily seen that the

corrected measurement matrix can be derived as follows:

ãi,j =

∫ ti+1

t=ti

1z(t)∈[ j
n
, j+1
n

]mi(t)dt

Note that the presence of the indicator function 1 de-
notes the fact that we assume absolute sectioning. There
is no PSF model in here.

This method can the be implemented to post-calibrate
measurement matrices (as shown in Figure 22b) and to
derive corrected measurement matrices (see Figure 22c).

So far, due to offset problem between the command
and the feedback (visible in Figure 22a), this method was
not used for the imaging presented in the next section.

3.2 Imaging results

3.2.1 Beads

To make a first demonstration of the method, we image
fluorescent beads on a coverslip.

First images Beads on a coverslip were imaged using
both the compressed sensing mode and the direct mode
for comparison. Due to the loss of synchronization of the
z-piezo at high imaging speed, imaging was performed
at long exposure time in order to allow the piezo to set-
tle (500 ms), and thus the results should only be seen
as a proof of concept rather than a final result. Further-
more, this acquistion was realized using a square Fourier
measurement matrix over 21 planes (no compression was
applied), using a dictionary derived from a different ac-
quisition. Sample reconstructed images are shown in
Figure 23.

On the positive side, the reconstruction algorithm con-
verges and produce a reconstructed 3D image. This im-
age is relatively accurate in the (x, y) plane, with both
large scale (halos from off-focus beads) and fine scale
details (in-focus beads) reconstructed in most planes.

On the downsides, when sections are visualized in the
(y, z) plane, there is almost no resolution in z, and it is
almost impossible to reconstruct an image in this plane.

Influence of noise A major difference between beads
and real-life samples is the brightness of the observed
objects: fluorescent beads are much brighter, and thus
the acquisitions are less noisy. To assess the influence of
noise during the acquisitions, we varied the laser power
by a factor of approximately 20, in order to obtain noisier
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acquisitions, closer from the SNR of real life samples.
Slices of resulting 3D stacks are presented in Figure 24.

Obviously, the reconstructions degrade in the noisy
setting. However, the degradation in the signal quality
seems to provide similar artifacts in the direct and in
the compressed domain. Also, the quality seems do not
drop dramatically as the noise increases.

Original Reconstruction

z=1
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Orig.
Rec.

x=50

x=169

x=223

Orig.
Rec.

Orig.
Rec.
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x=50

x=169

x=223

Figure 23: Comparison between a compressed sensing imaging re-
construction and acquisitions in the direct domain. (a). Compar-
isons in the (x, y) plane, (left) original plane, (right) compressed
sensing reconstruction, yellow dashed lines mark the position of the
(x, y) slices depicted in (b), (b). comparison in the (y, z) plane.
Reconstruction from 20 planes acquired at a 500 ms framerate.
Physical dimensions: 51.2 x 51.2x 3 µm.

This experiment can be seen as a first argument to
prove that acquisitions and compressed sensing recon-
structions are achievable in the presence of real-life imag-
ing noise.

3.2.2 Live samples

Although compressed imaging of live samples is the ma-
jor goal of this project, its realization is still in progress.

Original

Low exposure (low) Very low exposure

x=169
Orig.

full.

a.

b.

x=169

low.

vlow.

Full exposure (full)

Figure 24: Influence of noise when reconstructed 3D images of
beads. Images acquired with various laser powers, thus inducing
various SNR. (a). slices in the (x, y) plane, (b). slices in the
(y, z) plane. Reconstruction from 20 planes acquired at a 500 ms
framerate. Physical dimensions: 51.2 x 51.2x 3 µm.

3.3 Towards a widely applicable setup

Due to the high sectioning ability of the lattice light
sheet microscope, acquisition schemes performing a com-
pression in the z dimension is of particular interest, such
a compressed sensing scheme can be transposed to any
microscope used to realize 3D acquisitions.

Indeed, the acquisition scheme presented above can be
applied to any microscope as as soon as one can synchro-
nize the z position with the illumination power. This is
achievable either with lasers and an AOTF or a LED
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system (to get fast control of the LED, see Bosse et al.,
2015).

Here, we decided to implement a free/open source and
open hardware when possible compressed sensing mod-
ule for a traditional epifluorescence microscope.

3.3.1 Main components

We rely on the following components to implement the
compressed sensing imaging scheme.

µ-Manager (micro-Manager7) is a free/open source
software to command microscopes. It is written in
Java and builds on top of ImageJ. A major asset of
µ-Manager is its correctly documented API that easily
allow for the development of plugins.
µ-Manager plugins can pilot the hardware through

generic drivers and adapters. Then, very generic code
can be written to control a high diversity of hardware
configurations.

The aim of the project is to implement a compressed
sensing mode as a µ-Manager plugin.

Arduino

3.3.2 Software architecture

At the time of writing, the development of the plugin is
still ongoing. The code is divided into several parts:

Real-time code The code to be loaded on the Ar-
duino. It will ensure the command of the AOTF and
the z-piezo but also the communication with the com-
puter.

Arduino adapter for µ-Manager To implement com-
pressed sensing acquisitions, one need to load the sens-
ing matrix on the Arduino. This requires to modify the
Arduino driver/adapter to send and receive additional
commands to the Arduino.

µ-Manager plugin Communicates with the Arduino
adapter and provides an easy-to-use (graphical) control
over the compressed sensing mode, allowing to load sens-
ing matrices, perform acquisitions, etc. A first draft can
be seen on Figure 25.

7https://micro-manager.org, Edelstein et al., 2014

3.3.3 Results

As of the time of writing, some parts are still missing
on the microscope, and thus no experiment has been
performed yet.

Figure 25: First version of the control plugin for micromanager: a
measurement matrix has been loaded and can be displayed.

4 Discussion

Compressed sensing has been the subject of hectic de-
velopments in the past ten years and unraveled seminal
ideas that broadly affected the signal processing commu-
nity. Indeed, compressed sensing setups have revolution-
ized the field of MRI (Lustig et al., 2008), are regularly
used in astronomy and have seeded key concepts in the
machine learning community (Mairal, 2014).

Surprisingly, to our knowledge, compressed sensing-
based setups have never made it to a production stage in
the live microscopy imaging field, although many proof
of concepts were developed (Marim, Angelini, and Olivo-
Marin, 2009, Ye et al., 2009, Wu et al., 2010, Studer et
al., 2012, Schwartz, Wong, and Clausi, 2012, Zhu et al.,
2012).

Many reasons can be inovked:

1. Interdisciplinarity: designing a performant mi-
croscope is traditionally challenging, as it requires
at the same time a significant theoretical back-
ground and highly technical practical skills, and it
takes significant efforts for a mathematician to un-
derstand such a setup.

2. Interdisciplinarity (again): the traditional rea-
soning scheme in the compressed sensing field is
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nearly orthogonal to the ones in the microscopy
field. Indeed, the effects of common imaging artifact
(such as Poisson noise) is highly counter-intuitive.

3. Ease of use: When imaging in a compressed sens-
ing mode, the feedback to the user is the compressed
image, which is usually useless before decompres-
sion. With only the compressed image in hand dur-
ing the acquisition, the biologist has no clue of how
the sample is evolving. Even utterly simple parame-
ters such as assessing the focus cannot be performed
without a reconstruction.

4. Ease of use (again): most of the setups re-
quire day-long reconstruction times, which makes
the time between the acquisition and the analysis
even longer. Note that in the MRI field the use
of GPU allows some 3D reconstructions to be per-
formed nearly real-time (Smith et al., 2012, Nett,
Tang, and G.-H. Chen, 2010).

5. Low SNR: to gain either time or signal, the user
can always play on the exposure time of the cam-
era. which might have prevented extended studies
on how to speed-up the acquisitions.

In the above sections, we tried to demonstrate the
applicability of a compressed sensing approach to mi-
croscopy. To do so, we showed on simulations that com-
pressed sensing algorithms can efficiently recover 3D im-
ages, with a compression factor up to ten times in the z
dimension.

An interesting feature of compression in z with a
Fourier basis is that each first measurement of a 3D
stack is just the mean intensity over the stack (as the
first Fourier coefficient is the mean value of the signal),
allowing the user to get a 2D live feedback. Further-
more, fast, low quality reconstructions can be applied to
reconstruct a preview signal using inverse fast Fourier
transform.

However, the proof of concept on an actual hardware
setup is still ongoing, although we obtained encouraging
preliminary results.

4.1 Can this setup allow increased imaging
speed?

One of the main promises of compressed sensing imag-
ing is to reduce the time to acquire one 3D stack, thus

allowing faster acquisitions at a given SNR.
Indeed, if in the traditional acquisition mode a plane

is acquired in 10 ms and 200 planes make a 3D volume,
the capture of each 3D volume takes 2000 ms. If by the
means of compressed sensing one can achieve a 10 times
compression factor, thus leading to 20 measurements of
10 ms, the acquisition of a 3D volume is now as low as
200 ms, indeed allowing imaging ten times faster.

However, there might be several serious issues with
this:

1. Hardware limitation: in the actual setup, part of
the hardware is pushed to its physical limit (the z-
piezo scans at maximum velocity), and reconstruc-
tions require careful software correction (the post-
calibration of the sensing matrix). Due to this struc-
tural error, it is hard to master the actual sensing
matrix properties. Several solutions could nonethe-
less be envisioned: first, the hardware could be up-
graded to include a more powerful z-piezo. Other-
wise, one can imagine design sensing matrices ac-
counting for the z-piezo distortion, ensuring that
the theoretical measurement matrix matches the
empirical one (and not the opposite as in the cur-
rent setup).

2. Reconstruction times: if an acquisition at maxi-
mum speed were possible and a movie of 10 minutes
realized (to cover several mitosis in a fly embryo
for instance), this would result in 5x60x10 = 3000
3D volumes. Reconstruction of such a movie would
take several weeks on a HPC cluster. This can be
regarded as a poor compromise to get a ten times
speed-up in the acquisition time.

3. Structural stability: biologists usually perform
fast acquisitions to image fast moving structures.
Conversely, the compressed sensing setting assumes
that the sample reamins idle during the acquisition
of a 3D stack, that is the first and the last projection
of the sensing matrix indeed image the same thing.
Whereas fast motion in the traditional acquisition
mode results in motion blur and possibly duplicated
objects across planes, the effect of such movements
when imaging is compressed have not been assessed
in this work, but are likely to at least highly disturb
the reconstructed image, or, worst, prevent the al-
gorithms from converging. Similar problems have
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been addressed in the MRI field (Bilen, Wang, and
Selesnick, 2012).

All these considerations point to the fact that fast
imaging with compressed sensing remains challenging. It
should be noted that none of these hurdles are blocking.
They should be assessed carefully and the best trade-off
should be selected.

4.2 Can compressed sensing decrease pho-
totoxicity?

Another promising application of a compressed sensing
microscopy setup is to reduce phototoxicity. Indeed,
light imaging causes several damages to the sample.
These goes from photobleahing of the fluorescent probe
due to the formation of highly oxidizing, lihght-induced
free radicals to various metabolic and developmental de-
fects.

To this respect, many experiments are conducted un-
der a time lapse imaging mode: one 3D image is taken
at fixed time interal and the sample reamins in the dark
between them.

A compressed sensing scheme coupled to the lattice
light sheet microscope could bring a significant improve-
ment with respect to phototoxicity, indeed:

• The lattice light sheet already has a very low pho-
totoxicity because light is closely focused on the ob-
jective focal plane, limiting off-focus illumination

• In the compressed sensing mode, a 10 times com-
pression is equivalent to ten times less exposure.

• Furthermore, in the compressed sensing mode, since
the z-piezo is continuously swapping through the
sample, each region is illuminated for a very short
amount of time (of the order of less than 200 µs) for
every measurement. Thus, the sample is given time
to recover between two exposures. Such a feature
has been shown to reduce phototoxicity.

Although we didn’t have time to assess phototoxicity
in vivo, it is likely that this parameter will be improved
thanks to compressed sensing.

4.3 Reconstruction artifacts can be mini-
mized

Across the experiments, several major artifacts appeared
repeatedly: stripes in the reconstruction and low z res-

olution (see Figure 26). A major question is whether
these obstacles can be overcomed or do they represent
hard limitations of the method.

x
z

a.

b.

Reconstruction Original

Figure 26: Main reconstruction artifacts encountered in com-
pressed sensing reconstructions with a dictionary: stripes in the
z dimension and a degraded z resolution, as can be seen in both
panels (a) and (b). The two panels are zoom over a nucleus (∼ 15
µm).

Stripes Some reconstructions exhibit superimposed
stripes in the z dimension (visible in both panels of Fig-
ure 26. Such artifact turns out to be rather common
and is related to the size of the dictionary. In our simu-
lations, the use of a dictionary with a wider training set
exhibited less stripes than the ones with smaller train-
ing sets. Thus, it seems likely that this artifact can be
overcomed.

Low z resolution In many of the reconstructions, the
z resolution appears limited (the reconstructed objects
have a poor localization in z). One possible hypothesis
is that not enough samples have been collected during
the acquisition. A lower compression rate should then
solve the problem.

Another hypothesis lies in the nature of the measured
vectors. Indeed, it is not the same to perform a 10 times
compression on a 300 element long vector than in a 20
element long vector. In the former case reconstruction
is made from a 30 element compressed vector whereas
in the latter the vector only has length two, which obvi-
ously encodes a very very limited amount of information.
Indeed, a general rule in machine learning is that the
higher the number of dimensions the sparser the signals
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tend to be.
The images depicted in Figure 26 show limited resolu-

tion in z whereas our first simulations did not had those
artifacts. The major (if not only) difference between
those two simulations is the size of the input vector,
which was > 200 for the former and 100 for the latter.
We hypothesize that getting longer z vectors would solve
this problem.

This hypothesis is further strengthened by the acqui-
sition performed on beads with only 20 positions in z: it
shows almost no z sectioning.

4.4 Compressed sensing as a generic up-
grade of an epifluorescence microscope

One of the main shortcomings of previously proposed
compressed sensing settings for microscopy (recall
Marim, Angelini, and Olivo-Marin, 2009, Ye et al.,
2009, Wu et al., 2010, Studer et al., 2012, Schwartz,
Wong, and Clausi, 2012, Zhu et al., 2012) is that they
require strong modifications of an existing microscope.

Indeed, part of the setups implement a compressed
confocal scheme that require to add a DMD (digital mi-
cromirror device) into the light path. Another part of
the setups require to move the camera from a plane con-
jugated with the pupil plane to a plane conjugated with
the back pupil plane to directly image in the Fourier
space. Again, this requires a massive modification of a
traditional setup.

On the other hands, the setup we propose can be fit
to any epifluorescence microscope whose stage is con-
trolled by a z-piezo with no optical modification of the
setup, and, and likely little hardware modification. In
case a hardware modification is required, we propose an
Arduino-based replacement, which is both cost effective
and highly versatile (due to the high-level API provided
by the device and the numerous free/open-source code
published to work with microscope parts).

5 Conclusion

During the course of this six month internship we par-
tially developed a widely applicable compressed sensing
scheme that can be fitted with little or no hardware mod-
ification to a wide range of microscopes, from a high-
performance lattice light sheet microscope to a standard
epifluorescence microscope.

To do so, we first demonstrated on simulations the
feasability of compressed sensing techniques under noisy
conditions and designed a scheme where the signal of a
3D acquisition is compressed in z during the acquisition.
We demonstrated the applicability of this scheme both
on extensive simulations and on preliminary implemen-
tation on a lattice light sheet microscope.

Together with the hardware implementation, we de-
veloped a free (GPLv3) analysis and reconstruction
pipeline that can run both on an analysis computer or
on a computing cluster (HPC).

An implementation of the scheme on a generic epiflu-
orescence microscope, together with better quality ac-
quisitions are still in progress.

A pile of rubble randomly heaped: the most
beautiful order in the world.

— Heraclites
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6 Supplementary materials

6.1 Lattice lightsheet microscope

6.1.1 Principle of light sheet microscope

In standard epifluorescence microscopy (Figure 1a), the
same objective is used to illuminate the sample and ex-
cite the fluorophores and to collect the emitted light.
Thus, while the objective focal plane is relatively narrow
(in the order of micrometers), the whole sample is illumi-
nated (it is easy to show that the integrated laser power
over one z position is a constant: each plane receives
the same total power). Since the objective is focused on
a definite focal plane, this off-focus illumination should
not be an issue. However, this excites out-of-focus fluo-
rophores, increasing the background noise and reducing
the SNR.
Light sheet microscopes (Figure 1b) benefit from an il-

lumination confined to the depth of field of the objective.
Indeed, a second objective (called excitation objective)
is used to illuminate the sample. A clever optical path
upstream of the excitation objective patterns the radial,
Gaussian laser beam into a structured "sheet" that in
theory can be as thin as allowed by the numerical aper-
ture of the excitation objective. The detection objective
is placed orthogonally and kept confocal to the illumina-
tion sheet. Table 1 summarizes the differences between
the two techniques.

Table 1: Comparison between epifluorescence and light sheet mi-
croscopy
Criterion Epifluorescence Lattice Light sheet
off-focus illum. yes no
photodamage high low
Ease of use easy more challenging
Max. z resolution ∼ 1 µ m ∼ 300 nm

One can think that the illumination sheet can be made
as thin as possible. Indeed, techniques achieved vari-
ous sheet depth (Huisken et al., 2004, B.-C. Chen et al.,
2014). However, the rules of optics put a hard limit on
how focused a beam can be: the image of a point source
through an optical system, called the point spread func-
tion (PSF) determines the resolution of the system. This
resolution depends on the wavelength of the laser (λ) and
of the numerical aperture (NA) of the excitation objec-
tive through and scales as: λ/(2NA). Kim, 2011 details
and examplifies the image formation process.

The first light sheet microscopes were based on cylin-
drical lenses to produce an elongated beam, or light sheet
(Huisken et al., 2004). More recent techniques rely on
Bessel beams and lattice-derived interference patterns.

6.1.2 Theory of lattice light sheet microscopy

The concept of the lattice light sheet can be summarized
as follows:

1. An array of radially symmetric, non-diffracting
beam of light is created: a lattice of Bessel beams

2. The spacing between the Bessel beams is optimized
in order to ensure destructive interference betwee
the side lobes of the Bessel beams, thus "confining"
the beam.

3. This array of beams is then swept continually back
and forth across the sample at high speed, thus cre-
ating a uniform "sheet".

Part of this introduction follows closely B.-C. Chen
et al., 2014 (Supplementary Materials).

Bessel beams Light beams, as traveling waves, can be
described with an electric field e(x, t), where x stands
for the 3D coordinates. Under some asumptions (ho-
mogeneous medium), the electrical field can be decom-
posed into into the superposition of N propagating plane
waves:

e(x, t) =

N∑
k=1

en exp(i(kn · x− ωt)) (3)

where kn are the wavevectors characterizing each wave
plane, ω = 2πc/λ with λ the wavelength in the medium
and c the speed of light.

Now assume that one manages to tweak the beam such
as all the N wavevectors kn lie on the surface of a cone of
half-angle θ, that is: kn · ey = kcosθ. Eq. 3 can then be
factorized (McGloin and Dholakia, 2005 and assuming
that the wavevectors fully cover the cone):

e(x, t) =
A

2π
eJ0(k

√
x2 + z2 sin θ) exp [i(ky cos θ − ωt)]

(4)
Where J0(α) = 1

2π

∫ 2π
0 exp(iα cosφ)dφ. Such beams

where the wavevectors lie on a cone are called Bessel
beams. Notice that J0 is a zeroth-order Bessel function
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of the first kind. One can then notice a very interesting
property of such beams: they are non-diffracting. That
is, for the intensity I of a beam propagating in the z
direction: e(x, y, z) = I(x, y).

Such beams are solutions of the Helmholtz equation
and quasi-Bessel beams (of finite spatial extension) can
be experimentally generated (McGloin and Dholakia,
2005). Figure 27 shows a representation of the pattern
of a Bessel beam.
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Figure 27: (a). Bessel beam in the yz plane: the intensity pattern
is constant over z at y = cst, (b). intensity profile for x = 0, (c).
bessel beam in the xy plane: bessel function of the first kind of
order zero.

A Bessel beam is an ideal candidate to be swept across
the sample and thus form a light sheet (see Planchon et
al., 2011). Furthermore, theoretical and experimental
studies have showed that the central peak of the Bessel
function can be made diffraction-limited. However, a
characteristics of the Bessel functions is that each ring
carries the same energy, which would ultimately results
in out-of-focus illumination.

Lattice of interfering Bessel beams One way to
partly suppress outer rings of the Bessel function is to
trigger destructive interferences of the outer rings of ad-
jacent Bessel beams. Such interference can be achieved
by designing an array of Bessel beams, where the char-
acteristic lengths of the lattice are fine-tuned in order to
exhibit negative interferences (Figure 28a and b).
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Figure 28: Lattice of destructively interfering Bessel beams. (a).
schematic of destructive (top) and constructive (bottom) inter-
ference patterns between two Bessel beams. Note how the rings
between the two centers get attenuated/amplified. (b). interfer-
ence pattern on a 2D optical lattice created by the interference of
Bessel beams. inset: one Bessel function before interference, (c)-
left: SLM-mediated selection of a subpattern of the lattice, red:
SLM pixels off, -right: view of the incident beam at sample (after
dithering the beam in the x direction), (d). Bessel function (left)
and its intensity in the Fourier domain (right), and a zoom on the
annulus (inset), (e) intensity at the Fourier plane of an array of
Bessel beams (left) and its intensity at the object plane (right).

Once the beam has been confined thanks to the inter-
fering array of Bessel beams, a moving mirror continually
sweeps the pattern in order to "blur" it in the x direction
(Figure 28c-right) and ensure a uniform light intensity
at the sample. This allows to expose the sample with a
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very thin, possibly diffraction-limited light sheet.

Generation of the beam A last remaining question
is how to actually generate the array. Two non-exclusive
ways to generate the array of Bessel beams are:

• To engineer it in the direct domain using a spatial
light modulator (SLM, a liquid crystal device)

• To engineer it in the Fourier space (that corresponds
to the back focal plane of the objective, also called
"Fourier domain"). Indeed, a Bessel beam can be
generated by putting an annulus mask in the back
focal plane of the objective8 : the inverse Fourier
transform of an annulus is a Bessel function. The
array can be generated by restricting the illumi-
nation of the ring to regularly spaced spots (Fig-
ure 28e). To get an ideal Bessel lattice, the spots
should be infinitesimally small. Since this is phys-
ically impossible and impractical (because as the
size of the spots decreases, so does the total in-
cident light at sample), spots are kept as a finite
size. This leads to the formation of a Gauss-Bessel
beam, which exhibits similar focusing properties as
the Bessel beam.

As detailed below, a combination of the two ap-
proaches can be implemented.

6.1.3 Optical implementation

In practice, a complex optical path is required to gener-
ate the light sheet (Figure 29 and 2). First, an elongated
beam is created by a pair of cylindrical lenses. Then, a
spatial light modulator applies a binary intensity mask
conjugated with the object plane, in order to confine the
light sheet in z and to produce the interference pattern.
An annular mask is placed in the Fourier plane to filter
the pattern and reject unwanted frequencies.

At that stage, the lattice light sheet has been created.
It is then dithered along the x axis in order to produce a
homogeneous illumination pattern. This is done by the
x galvo (a digitally-controlled orientable micromirror).
The dithered sheet is then projected onto the sample
by the excitation objective, and the emitted light is col-
lected with the observation objective at a 90° angle and

8Derivation can be found on this page:
http://math.stackexchange.com/questions/78316/
fourier-transform-of-bessel-functions

projected onto the sensor of a electron-multiplying CCD
camera (EMCCD), providing a very high sensitivity.

exc. obs.

a.

d.

i.

g.
h.

c. d.
e.

f.
g. h.b.

Figure 29: Picture of the lattice light sheet microscope. (a). from
the laser lines and the AOTF, (b). x cylindrical lens, (c). z
cylindrical lens, (d). SLM, (e). annulus mask, (f). z and x
galvos., (g). excitation objective, (h). observation objective, (i).
to EMCCD camera. inset: zoom on the objectives.

When focusing through the sample, the observation
objective moves with respect to the sample in the z

plane. To keep the sheet in focus, the z galvo adjusts
the position of the sheet, so that the sheet and the focal
plane of the observation objective remain confocal.

Finally, the laser intensity at the sample can be ad-
justed by an acousto-optical tunable filter (AOTF), a
piezo-electric device that can be used to precisely and
rapidly modulate the light intensity. A picture of the
actual light path is shown Figure 2.

To achieve successful imaging, several pieces of hard-
ware have to be precisely synchronized:

• The dithering in x has to be synchronized with the
camera exposure in order to avoid aliasing effects
and to ensure even illumination,

• The light sheet and the focal plane of the observa-
tion objectives have to remain confocal,

• Since the SLM has has a short periodic off time,
this also has to be synchronized with the camera.

Synchronization is achieved by using a real-time, pro-
grammable device: a field-programmable gate array
(FPGA). The controllable parts of the microscope are
connected to the FPGA through either digital or ana-
log channels. The FPGA runs a specific execution se-
quence to acquire an image (such as: open AOTF, start
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the SLM, trigger the camera, etc). A custom-built GUI
helps to design control sequences that are compiled and
sent to the FPGA. Thanks to the programmable nature
of the FPGA, custom imaging sequences can be imple-
mented, allowing some tweaking from the user.

In order to implement the specific, user-defined imag-
ing schemes required to do compressed sensing, some
parameters of the microscope will have to be tuned. It
is thus useful to review a set of characteristics and lim-
itations of the microscope, in order to design a scheme
that fits those requirements. A few characteristics are
summarized in Table 2.

Table 2: Characteristics and limitation of the lattice light sheet
microscope. (*) depending on the size of the region of interest
imaged, (**) valid for an unloaded piezo. When the piezo carries
the detection objective, this frequency is much lower (see Section
3.1.2 for a more detailed discussion). Values come from reference
sheets, user manuals or effective measured characteristics.
Parameter Value
Thickness of the sheet down to ∼ 400 nm
Laser power (input/at sample) 1 W / 5 mW
Camera framerate (512x512 px) 100 Hz*
Camera framerate (128x128 px) 1000 Hz*
x or z dithering 15 kHz
AOTF off → on time ≈ 10 µ s
Piezo stage speed up to 250 Hz**

6.2 Theory of compressed sensing

Rather than presenting an exhaustive view of the com-
pressed sensing field, this section focuses on key concepts
and theorem that are relevant for the implementation of
compressed sensing schemes in microscopes.

6.2.1 Statement of the problem

The compressed sensing problem can be stated as an
optimization problem such that standard optimization
techniques can be applied.

We have introduced in Section 1.2 the connections be-
tween compressible signals and sparsity. Indeed, assum-
ing a sparse input signal x of length n, we aim at show-
ing that it can be recovered from m � n non-adaptive
measurements y performed with a measurement matrix
A ∈ Rm×n, which can be formulated as:

x̂ = x sparse, s.t. y = Ax

Now, when solving a linear problem such as y = Ax,
one can see (Figure 30) that some optimization criteria

such as `p, p ≤ 1 norms tend to produce sparse solutions.
Indeed, assume that one solves the optimization problem
minx ||x||`p s.t. y = Ax and that the `p cost is given (the
problem can be seen as finding the intersection between
the linear constraint and the `p norm polyhedron. For
p > 1, the polyhedron is convex, and the intersection
(the solution to the problem) is likely to give a point with
many non-zero coordinates. On the other hand, when
p ≤ 1, the polyhedron is not convex, and the intersection
with the linear constraint is likely to fall on the axis, ie.
the other coordinates are zero: the solution is sparse.

Figure 30: `p norms induce sparse solutions when p ≤ 1. Solving
the problem y = Ax under various `p norms. Here the polyhedra
represent fixed cost functions. When the solution lies on the axis
(`p, p ≤ 1), it has some zero coordinates (an increasing amount
with the dimensionality of the problem) and thus is sparse.

An interesting limit case arises when p tends to zero.
One then finds the so-called `0 pseudo-norm, that is sim-
ply the number of non-zero coordinates. Thus, the com-
pressed sensing problem is canonically stated as (E.J.
Candes and M. Wakin, 2008, Baraniuk, 2007):

min
x
||x||`0 s.t. y −Ax = 0 (5)

That said, such formulation of the problem leads to
several questions. One of the firsts is related to the fact
that the `0 pseudo-norm is non-convex, and thus one has
no guarantee about the uniqueness of the solution of the
optimization problem and the existence of local minima.

6.2.2 Uniqueness of the solution

Uniqueness via the spark Although non-convex,
one can show that this problem has a unique solution.
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Following Elad, 2010, let us first define the spark of a
matrix:

Definition 1 (Spark, from Donoho and Elad, 2003).
The spark of a given matrix A, spark(A), is the smallest
number of columns from A that are linearly dependent,
that is:

spark(A) = min
d6=0
||d||0 s.t. Ad = 0

According to Donoho and Elad, 2003: "note that, al-
though spark and rank are in some ways similar, they
are totally different". The spark characterizes the null-
space of a matrix with `0 norm. For instance, if A is full
rank, then spark(A) = 2.

In contrast with the rank, computing the spark of a
matrix is hard, because it requires to enumerate over
all the combinations of columns. Indeed, it turns out
that the computation of the spark is a NP-hard problem
(Tillmann and Pfetsch, 2014).

Furthermore, vectors x in the null-space of A have
||x||`0 ≥ spark(A). Indeed, since the null-space is char-
acterized by {x,Ax = 0}, one need to select and combine
linearly at least spark(A) vectors from A to create the
zero vector.

Theorem 2 (Uniqueness – spark, from Elad, 2010). If a
system of linear equations Ax = y has a solution x such
that ||x||`0 < spark(A)/2, this solution is necessarily the
sparsest.

Proof. Assume x and x′ two solutions to the underter-
mined linear problem Ax = y and that x is such that
||x||`0 < spark(A)/2.

Since x and x′ are two solutions, x− x′ is in the null-
space of A: A(x − x′) = 0. Then, by the definition of
the spark, it follows that:

||x− x′||`0 ≥ spark(A)

Then, by the triangular inequality:

||x||`0 + ||x′||`0 ≥ spark(A)

Then, since ||x||`0 < spark(A)/2, it follows that
||x′||`0 ≥ spark(A)/2, which concludes the proof.

Theorem 2 provides a way to characterize a solution
to the compressed sensing problem, and a criterion to
assess its optimality. It must be stressed how beautiful

and inexpected is this result: there exists a criterion
that allows to determine whether the solution is optimal
or not and this relaxes the need to worry about local
minima in the cost function.

Nonetheless, one has to remember that computing the
spark of a matrix is a difficult problem (actually, it is at
least as difficult as solving the optimization problem).
Computable bounds on the spark are then needed.

Uniqueness via the mutual coherence one tradi-
tional bound on the spark is called the mutual coher-
ence and measures the degree of redundancy between
the columns of a measurement matrix:

Definition 2 (Mutual coherence). The mutual coher-
ence of a matrix A, µ(A) is the maximal inner product
between two columns of A (assuming that the columns
are `2 normalized), that is:

µ(A) = max
1≤i,j<m,i6=j

|atiaj |
||ai||`2 ||aj ||`2

For a matrix where the columns are pairwise orthog-
onal (for instance an identity matrix), the mutual co-
herence is zero. In the compressed sensing setting, A
has more columns than rows, and thus µ(A) > 0. It has
been shown (Donoho and Huo, 2001) that random matri-
ces tend to have low mutual coherence. Such a property
is very interesting for comprxessed sensing applications,
as emphasized by Theorem 3. It can be noted that µ(A)

can be computed in polynomial time.

Theorem 3 (Uniqueness – mutual coherence, from
Elad, 2010).

spark(A) ≥ 1 +
1

µ(A)

Proof. see Donoho and Elad, 2003 or Elad, 2010.

Finally, it has to be noted that mutual coherence is
really a rough estimate of the spark, and not an equiva-
lent property. Nonetheless, this criterion will be used to
design good sensing matrices.

Conclusion Although the compressed sensing mea-
surement problem leads to a (sometimes highly) under-
parametrized problem, one can exhibit a computable cri-
terion (themutual coherence) that ensure the uniqueness
and the characterization of solutions to the problem.
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6.2.3 Theoretical guarantees

Once one has shown the existence of a unique solution
to the original problem, one might wonder: how close is
this solution from the original signal? This closeness can
be expressed in terms of mean squared error between the
original signal x̃ and x the output of an algorithm solving
the optimization problem (MSE(x, x̃) =

||x−x̃||`2
||x̃||`2

), and
we are particularly interested in how this error scales
with the number of measurements (inversely propor-
tional to the compression ratio). Otherwise stated, one
seeks the relation between the error and the compression
rate, i.e. what do we lose when we choose to collect, let’s
say, ten times less data than in the traditional acquisi-
tion scheme?

Restricted isometry property First, it is obvious
that the efficiency of the reconstruction strongly depends
on the ability of the sensing matrix to capture the fea-
tures of the signal. For instance, if one uses a matrix
whose coefficients are all equals, then the resolution will
be very low. On the other hand, a measurement matrix
where all the columns are orthogonal will have the abil-
ity to capture more information with less coefficients.

Remarkably, this property can be partly summarized
in one figure: the order of the restricted isometry prop-
ery or RIP, introduced in Terence Tao and Candès, 2004.
This constant characterizes a sensing matrix and is de-
fined as follows:

Definition 3 (Restricted isometry property, from E.J.
Candes and M. Wakin, 2008). Consider a measurement
matrix A ∈ Rm×n, n > m where the columns are `2 nor-
malized and As a subset of s < n columns of A. A is
said to satisfy a s-restricted isometry property with con-
stant δs if for any m× s submatrix and for every vector
y:

(1− δs)||y||22 ≤ ||Asy||22 ≤ (1 + δs)||y||22

The fact that one takes a subset of s columns from A

can also be interpreted as imposing that y is s-sparse,
and one can then define the restricted isometry constant
for a given sparisty s of y: δs as the smallest δ such as:

(1− δs)||y||22 ≤ ||Ay||22 ≤ (1 + δs)||y||22, y s-sparse

That is, for any subset of columns A behaves, up to

a factor δs similarly as an orthogonal transform that
lose/gain no energy: it approximately preserves the mag-
itude of the the s-sparse vectors y.

Note that computing δs is a hard problem.

Link with compressed sensing When a measure-
ment matrix A satisfies the s-restricted isometry prop-
erty with constant δs, the distances between any two
s-sparse vectors are conserved up to a factor δs. When
δs is sufficiently small, "little information is lost" and
(among many others), the following theorem holds:

Theorem 4 (Reconstruction error, from E.J. Candes
and M. Wakin, 2008). Let x? be the solution to the fol-
lowing optimisation problem:

min
x
||x||`1 s.t. y = Ax(= Ax̃)

with x̃ the original vector before compression. Assume
δ2s <

√
2 − 1 and denote x̄S the vector x̃ where all but

the S largest coefficients have been set to 0. Then the
reconstruction error obeys:

||x? − x̃||`2 ≤ C0||x̃− xs||`2/
√
s

Note that when the original x̃ vector is s-sparse, then
x̃− x̄s = 0 and the reconstruction is exact.

This theorem states that provided a s-sparse signal
measured with m measurements m < n (and possibly
m � n) and whose measurement matrix satisfies a s-
RIP of constant δs, an exact solution can be derived
from the optimization problem.

Sensing matrices satisfying the RIP Now that one
has a criterion allowing to perform exact reconstructions
in the compressed sensing setting, provided that A sat-
isfies a given restricted property, one seeks a way to find
such matrices.

A very interesting result that will conclude this in-
troduction is the following: any random matrix (with
Gaussian or so-called sub-Gaussian distribution) satis-
fies the RIP with high probability (exponentially small
in m) provided that (Candès and Terence Tao, 2004):

m ≥ C · s log(
n

s
) (6)

Stated differently, it is possible to recover exactly a s-
sparse signal using only m measurements (with m satis-
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fying Eq. 6) with a very high probability using a random
matrix as sensing matrix.

6.3 Algorithms for compressed sensing

6.3.1 A simple algorithm – OMP

In this subsection we present a simple (yet empirically
efficient) algorithm for compressed sensing reconstruc-
tions: Orthogonal Matching Pursuit (OMP, detailed in
Elad, 2010 and analyzed in Davenport and M. B. Wakin,
2010):

To recover a s-sparse signal of length n from a com-
pressed measurement y of length m < n can be envi-
sioned as a two-step process:

1. Estimation of the support : the location of the s non-
zero coefficients is determined,

2. Estimation of the coefficients: the value of these s
coefficients is estimated.

In most of the cases, the sparsity s of the input vec-
tor x is unknown. Once the set of non-zero coefficients
has been estimated, simple methods such as least square
regression can be used to determine their magnitude.

From this intuition, it is easy to create an algorithm
that will solve the compressed sensing problem. One
can cycle over all the possible supports, perform a least
square estimate and finally select the sparse vector x
that has the lowest residual ||y − Ax||`2 . Although
rigourous, this algorithm is obviously intractable, be-
cause it runs in non-polynomial, exponential time and
requires to iterate over all the possible supports, that is,
to iterate over 2n elements, where n is the length of x.

Nonetheless, it is possible to derive an approximate
algorithm from this intuition: one can imagine progres-
sively estimating the support of x, starting with a (n−1)-
sparse vector and adding new elements one by one until
a convergence criterion is reached. Such an algorithm is
called orthogonal matching pursuit and can be stated as
in Algorithm 1 (from Elad, 2010).

Note that one of the key points on the speed of this
algorithm is the fact that minimizations of the form
arg minx ||ASkx − y||2`2 can be solved analytically (least
squares), thus, no iterative optimization subroutine is
ever needed.

We present below several algorithm with good enpiri-
cal performances.

Data: compressed vector y, sensing matrix A,
convergence criterion ε

Result: x, a sparse solution to the ||y −Ax||`2
problem

Initialization
- Initialize support S0 ← ∅;
- Initialize solution x0 ← 0;
- Initialize residual r0 ← y −Ax0 = b;
- k = 0;
while Convergence not reached: ||rk||`2 > ε do

k ← k + 1;
for each column aj of A do

Compute εj ← minx ||ajx− rk−1||2`2 ;
that is the value of x that minimizes the
residual as much as possible when applied to
column j of the matrix.

end
Update support
- j? ← arg minj 6∈Sk−1 εj ;
- Sk ← Sk−1 ∪ j?;
Update solution
- xk ← arg minx ||ASkx− y||2`2 where ASk stands
for the restriction of A to the columns index are
in Sk.
- Update residual: rk = y −Axk

end
Algorithm 1: Orthogonal matching pursuit

6.3.2 Algorithms for compressed sensing

Since the compressed sensing problem can be restated in
several equivalent forms, literally hundreds of algorithms
have been derived to solve the problem9. Unfortunately,
to our knowledge, no study ever tried to aggregate the
performances of the algorithms in order to assess the
conditions under which the algorithms performs best. A
useful starting point is Becker, Bobin, and Candès, 2009.

Here, we give some key characteristics of the algo-
rithms used in this work.

`1- magic (Emmanuel Candes and Justin Romberg,
2005) is presented as a "toy" library to solve several
compressed sensing problem. We used the implementa-
tion that solves the so-called basis-pursuit version:

min
x
||x||`1 s.t. y = Ax

Note that this problem actually differs from Eq. 1 only
by the use of the `1-norm instead of the `0-pseudonorm.

9A very extensive list of compressed sensing reconstruction al-
gorithms can be found on Igor Carron’s webpage. Many of them
are also reviewed on the Nuit Blanche website by the same author.
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`1- magic solves this problem10, 11 by using a so-called
interior point method (Newton method) inside a so-
called primal-dual algorithm, a second-order method.

Over the years, `1- magic has become a reference im-
plementation for beginners.

NESTA (Nesterov’s algorithm, Becker, Bobin, and Can-
dès, 2009) was introduced as an intermediate trade-off
between fast, low accuracy, first-order methods and slow,
high accuracy second-order methods.
NESTA solves the following `1-relaxed basis pursuit

problem11, 12:

min
x
||x||`1 s.t. ||y −Ax|| ≤ ε

Resolution of the problem is achieved by replacing the
traditional non-smooth `1-norm by a smoothed version,
and then applying the so-called Nesterov’s method to
solve the regularized problem.

lasso (least absolute shrinkage and selection op-
erator) It is interesting to see that Eq. 1 can also be
equivalently reformulated as a lasso problem, a classi-
cal sparse regression widely used in statistics. Indeed,
the problem can be restated as:

min
x
||y −Ax||2`2 + λ||x||`1

where λ governs the trade-off between accuracy of the
reconstruction (low λ) and the sparsity of reconstruction
(high λ).

6.3.3 Algorithm for Poisson noise settings

The generic algorithms highlighted below usually per-
form well in the general case. They can, however, un-
derperform when applied to real-life compressed sensing
imaging settings. Several factors can explain this under-
performance:

1. As described above, image acquisitions are contam-
inated with Poisson noise, a signal-dependent per-
turbation that is not accounted for by the tradi-
tional relaxed compressed sensing solvers.

2. Images only have positive values (no negative pho-
ton count).

10A Matlab™ implementation of `l- magic is available.
11This code also has a Python implementation.
12A Matlab™ implementation of NESTA is available.

Fortunately, some algorithms have been developed to
deal with the specific constraints of image sensing. We
present one of them:

SPIRAL-TAP (Harmany, Marcia, and Willett, 2012) is
a a Matlab™ code that uses a penalized Poisson likeli-
hood with positivity constraints to ensure the quality
of reconstruction. Indeed, under a Poisson model as
described in Section 1.3.2 the probability of observing
a given compressed measurement vector y of length m

from the original vector x is given by the following like-
lihood:

P (y|Ax) =
m∏
i=1

((Ax)i)
yi

yi
exp (−(Ax)i)

where (Ax)i denotes the i th element of the vector Ax.
From this likelihood, the negative log-likelihood

penalty F (x) = − log (P (y|Ax))) is derived, and the
SPIRAL-TAP algorithm solves13 the following constrained
problem:

min
x
||x||`1 + λF (x) s.t. x ≥ 0

This problem is solved by using a second-order Taylor
expansion of the Poisson likelihood term. Such approxi-
mation brings separability and allows to derive subprob-
lems that can then be solved by gradient descent.

Conclusion Although the noisy setting significantly
differs from the noiseless one, there exists both theoret-
ical grounds and efficient algorithms that allow to per-
form reconstructions with an error bounded by a func-
tion usually linear in the noise level.

6.4 Dictionary learning

In this section, we examine two key properties that al-
low the use of sparsifying transforms in the context of
compressed sensing:

1. If the signal has a sparse representation in some
known basis, all the compressed sensing theory ap-
plies with very little modification.

2. One can show that an uncertainty principle holds
that states that a signal cannot be spread out in all
of its representations.

13Both a Matlab™ and a Python implementation are available.
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6.4.1 Existence of sparse representations: an
uncertainty principle

Assume that one can apply the compressed sensing the-
ory and algorithms to a signal that has a sparse repre-
sentation in some known basis. Then a natural question
arises: how often does a signal admit a sparse represen-
tation in some basis? How can such a basis be found?
To first give an intuition of the existence of sparse rep-
resentation, let us xsconsider the following example:

Consider a signal f in the direct/Dirac domain and
its Fourier transform F . Then, assuming that f is `2-
normalized, one can derive a so-called uncertainty prin-
ciple: ∫ ∞

−∞
x2|f(x)|2dx ·

∫ ∞
−∞

ω2|F (ω)|2dω ≥ 1

2

Note that the quantity x2|f(x)|2 (resp. ω2|F (ω)|2)
expresses the idea of concentration in time (resp. fre-
quency). Thus, one can interpret this relation by saying
that a signal cannot be infinitely concentrated both in
time and frequency. This uncertainty principle is sim-
ilar to the Heisenberg uncertainty principle in physics.
Closer to our compressed sensing setup, this principle
translates into the fact that a signal cannot be sparse
(or conversely, non sparse) in both the Dirac and the
Fourier basis. This principle can be further generalized
to orthobases, and requires a definition of the proximity
of two orthobases. This definition is a small extension
of the coherence stated above (Definition 2 :

Definition 4 (Mutual coherence for two orthobasis of
size n × n, from Elad, 2010). Assume Φ and Ψ two
orthobases of size n × n and let A their concatenation
A = [Φ,Ψ], then the mutual coherence for two orthobases
µ(A) is defined as :

µ(A) = µ([Φ,Ψ]) = max
1≤i,j≤n

|Φt
iΨj |

One can then consider the following setup: assume
a vector b and its representation in two different or-
thobases Φ and Ψ of mutual coherence µ(A): b = Φα =

Ψβ. Then, the following uncertainty principle holds,
similar to the one with Fourier/direct orthobases:

Theorem 5 (Uncertainty principle for orthobasis). For
arbitrary orthobases Φ and Ψ of mutual coherence µ(A),
a vector b and α (resp. β) its representation in the Φ

basis (resp. Ψ), i.e. b = Φα = Ψβ, then:

||α||`0 + ||β||`0 ≤
2

µ(A)

Indeed, recall that the mutual coherence is bounded
1/
√
n ≤ µ(A) ≤ 1, thus, provided a pair of orthobasis

with mutual coherence low enough, this theorem guar-
antees the existence of a sparse representation.

Proof. See Elad, 2010

Finally, knowing the existence of a sparsifying trans-
form doesn’t tell which transform to use.

6.4.2 From sparsifying basis to dictionaries

Remarkably, sparsifying transforms do not need to be a
basis. Indeed, sometimes signals can be "sparsified" us-
ing more vector elements than the ones in a basis. In this
case the matrix D is called a dictionary and has more
lines than columns (and sometimes many more lines than
columns).

First, it is interesting to notice that the whole com-
pressed setting can be applied without modification.
Furthermore, the range of dictionaries that are tradi-
tionally used is wider than with basis. Examples include
curvelet dictionaries, redundant Discrete Fourier Trans-
form, Gabor frames, etc.

One of the main differences between a sparsifying ba-
sis and a dictionary is that there is no bijection anymore
between the reconstructed signal x′ and the original x:
because the dictionary has more lines than columns, sev-
eral values of x′ can lead to the same vector x. This is
why such dictionaries are often called redundant dictio-
naries.

Although seductive, several questions arise. First, the
actual basis used for reconstruction is the matrix prod-
uct AD. We can then wonder which properties both
the matrix AD and D should follow in order to provide
good reconstruction guarantees. For instance, what are
the constraints on the RIP in this setup?

What happens to the RIP? This situation has been
studied in details by Emmanuel Candes, Eldar, et al.,
2010, and a general introduction can be found in X. Chen
et al., 2014.

To do so, the authors introduce Σs the union of all
subspaces created by keeping s columns of the dictionary
D (of size N × n) and the so-called D-RIP :
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Definition 5 (RIP adapted to D – D-RIP, from Em-
manuel Candes, Eldar, et al., 2010). The measurement
matrix A obeys a restricted isometry property adapted to
D (D-RIP) of constant δs if for any x an image by D of
a s-sparse vector the following relation holds:

(1− δs)||x||2`2 ≤ ||Ax||
2
`2 ≤ (1− δs)||x||2`2

Note that Σs can be seen as the set of the images by
D of s-sparse vectors.

In a very analogous manner as Theorem 4, the au-
thors show that for a tight frame (that is, ∀v ∈
Rn,

∑
1≤i≤N |〈v,Di〉|2 = ||v||2, where (Di)1...N denote

the columns of D):

Theorem 6 (Reconstruction guarantee under D-RIP,
from Emmanuel Candes, Eldar, et al., 2010). For D an
arbitrary tight frame and a measurement matrix A satis-
fying the D-RIP of constant δs < 0.008, then the recov-
ered solution x compares to the original s-sparse signal
x? as follows:

||x− x?||`2 ≤ C0ε

where ε is the error-tolerance constant in the relaxed
formulation of compressed sensing (Eq. 2).

Note that the original article also provides guaran-
tees for approximately-sparse signals. This result states
that for an arbitrary tight frame, one has reconstruction
guarantees provided that the sensing matrix satisfies the
D-RIP, and this theoretically justifies the use of a dictio-
nary in the compressed sensing setting. Also, assuming
that A satisfies a D-RIP is a significantly weaker asump-
tion than requiring AD to satisfy the traditional RIP.

Are we really optimizing for the right thing? As
stated above, there is no bijection between the sparse,
intermediate representation x′ and the solution in the
original domain x (or signal space). In the case of a
sparsifying basis, it is equivalent to obtain a reconstruc-
tion guarantee in the intermediate space (||x′ − x′?||`2)
than the signal space (||x− x?||`2). However, when one
moves from a basis to a dictionary/frame, those two er-
rors can become highly decorrelated.

To circumvent this issue, Davenport, Deanna Needell,
and M. B. Wakin, 2013 propose an algorithm, called
SS-CoSaMP (standing for signal space compressive sam-
pling matching pursuit). SS-CoSaMP adapts the widely

used CoSaMP algorithm (D. Needell and Tropp, 2008) to
a signal space paradigm. Indeed, reconstruction guaran-
tees for this algorithm are derived in signal space rather
than in the intermediate space and reads at iteration l
of the algorithm:

||x? − xl||`2 ≤ 2−l||x?||`2 + C2ε

Despite its theoretical advantage, SS-CoSaMP seemed
to perform poorly in our setting, and it wasn’t used in
the further analysis.

Conclusion In this subsection, the potential of dic-
tionaries with respect to sensing bases has been demon-
strated from a theoretical standpoint.

6.4.3 How to find a dictionary?

Now that the theoretical requirements to perform com-
pressed sensing with a sparsifying basis/dictionary are
established, one seeks real-life algorithms to find such
dictionaries. Two approaches can be undertaken:

1. Blind guesses: take a generic transform that usually
work well with the type of features considered. For
instance, wavelet basis are usually suitable for im-
age compression, and curvelets seem to achieve one
of the best performance.

2. Learn a representation from sample data. Provided
that the sample data has enough diversity, such ap-
proach usually gives the best results.

Principles of dictionary learning Dictionary learn-
ing is a data-dependent method that can be used to learn
a dictionary in which most of the observed signals have
a sparse representation (X. Chen et al., 2014). Indeed,
one seeks a dictionary that has the following property:

For a training set of k vectors of length n (k signals
acquired in the signal space: x1, x2, . . . , xk ∈ Rn), one
seeks:

1. a dictionary D ∈ Rn×N (where N is a free param-
eter characterizing the size of the dictionary, also
called number of atoms),

2. A series of k vectors of coefficients γ1, γ2, . . . , γk ∈
RN such that ∀i,Dγi is close to xi.
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That is, the dictionary is able to reconstruct the train-
ing set accurately. Since the dictionary that is being
built is overcomplete (usually N � n), it can recreate
any vector of the training set. An important feature of
such algorithms is thus the sparsity of the output, that
is, whether the dictionary is indeed able to encode the
structure of the training set into a low number of coeffi-
cients of a sparse vector.

This problem can be recast as a traditional optimiza-
tion problem:

min
D,Γ
||X −DΓ||2F s.t. ||γ||0 ≤ η,∀i

where D is the dictionary and Γ is a N × k matrix of
coefficients and η a parameter to enforce sparsity of the
representation. || · ||F stands for the Fröbenius norm.

6.5 Effect of dictionary parameters

When performing dictionary learning with NMF (or equiv-
alently, sparse-NMF, see Section 6.4.3), two paramenters
can be adjusted, that will impact the quality of the dic-
tionary:

1. The number of atoms in the dictionary

2. The size of the training set, that is the number of
sample vectors used to train the dictionary.

Ideally, one wants those two parametrs as big as pos-
sible, but in practice, although building enormous (>20
times redundant) dictionaries is feasible, reconstructions
are impractical. Indeed, since the matrix used for the
compressed sensing reconstruction is the product AD of
the measurement matrix A with the dictionary D, hav-
ing D a very large matrix makes the product AD too
large to achieve reconstructions in areasonable time.

On the other hands, the size of the training set is
mostly limited by the amount of data available.

To find the best trade-off for those two parameters,
we first work with a ∼ 2 times overcomplete dictionary
and vary the size of the training set, from five to twenty
frames. The sample frames are extracted from a 3D
stack and are regularly spaced. The reconstructed image
is not part of the training set (although arising from the
same 3D stack).

Results are presented in Figure 31 for two dictionary
learnign algorithms: NMF and sparse-NMF.
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Figure 31: Compressed sensing reconstructions obtained usiong
various dictionaries. (a). Original image, (b)-left. reconstruc-
tions using a dictionary obtained with NMF (1200 atoms, various
size of the training set, from 5 sample images – top – to 20 –
bottom –), and (b)-right. the corresponding absolute error, the
colorscale is the same as the reconstructions. (c). reconstruction
using a dictionary assembled by the sparse-NMF algorithm (1600
atoms, 20 sample images in the training set).
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First, note that since the size of the dictionary remains
fixed (only the size of the training set varies), the recon-
structions take approximately the same time to run. It
appears that the number of samples/size of the train-
ing set significantly impacts the quality of reconstruc-
tion. Indeed, when zooming for instance on Figure 31b-
5. samp., one can spot horizontal stripes in some parts
of the image (the most feature rich in general). Such
artifacts are much less visible when the dictionary has
been made from 20 samples.

Then, the sparse-NMF algorithm performs really
poorly compared to traditional NMF (Figure 31), with
very visible artifiacts. Such artifacts remain striking
even with a higher number of atoms and a high number
of samples.

To balance the trade-off, one has to examine the time
to build the dictionary, in order to keep the pipeline
running time reasonable. An assessment of the dictio-
nary learning times for the NMF algorithm is provided
Figure 32. Note that the figures solely include the time
taken to learn the dictionary, not the time to perform
the reconstruction (which is usually much longer as soon
as 3D volumes are concerned).
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Figure 32: Benchmarking of the NMF algorithm. Time taken to
build a dictionary with a given number of atoms from a given num-
ber of sample images. Sample images have size 512x512. Time is
expressed in logarithmic scale. Horizontal dashed line represent
one minute and one hour computation. Test run on a 32-core In-
tel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz, 64 GB RAM running
Ubuntu 14.04 64 bits (Linux 3.13)

As a result of this benchmark, it first appears that
the computation time to build a dictionary remains rea-
sonable for all the parameters tested. Indeed, since the
dictionary only has to be generated once per data type
(and can be precomputed), computation times less than
a few hours are regarded as acceptable.

Furthermore, increasing the size of the training set
only marginally increases the computation time. Thus,
it is always advantageous to build dictionaries from more
sample images (since it make no difference in the recon-
struction time and it significantly improves the recon-
struction quality).

6.6 Multidimensional case

As a first approximation, there is a one-to-one mapping
between a (x, y) position on the sample and a (x, y) posi-
tion on the camera, which prevents compressed sensing
to be applied in more than one dimension. However,
this is only a first order approximation. Indeed, due to
the fact that the signal coming through the objective is
bandlimited, any feature appears convolved by a point-
spread function (PSF, see Kim, 2011). The PSF can be
incorporated in the measurement matrix, leading to a
multidimensional model.

A 3D, uncompressed volume of dimension l×w×h can
be seen as an "unfolded" 1D vector of length lwh. The
measurement matrix also has to be "unfolded". Assum-
ing true compression only in the third dimension (h) and
h′ the number of measurement in the compressed mode,
the measurement matrix A has dimension h′ × h (re-
call that all the (x, y) positions are independent. Then,
the corresponding "unfolded" measurement matrix is a
block-diagonal matrix of dimension lwh′ × lwh. An ex-
ample on a 2D image in the (x, z) plane is shown in
Figure 33.

Such an approach has been described and imple-
mented on 2D+time acquisitions (M. B. Wakin et al.,
2006, Ramirez-Giraldo et al., 2011), and GPU-optimised
code has been published (Nett, Tang, and G.-H. Chen,
2010). Unfortunately, the authors did not release the
code, and did not respond to our emails.

Although more realistic because it incorporates some
physical information about the PSF, this model is dra-
matically more computationally expensive to solve be-
cause we moved from l × w problems of size h to one
problem of size l × w × h. Since all the `1 solvers have
a complexity always strictly worse than linear, the com-
putational time would explode in practice.
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Figure 33: Towards a multidimensional model to take into ac-
count the PSF. (a). representation of (left) an uncompressed 3D
acquisition X of 16 × 16 × 12 voxels and (right) its Y counter-
part compressed in z, of dimensions 16× 16× 4 voxels. Following
panels focus on the uncompressed (resp. compressed) (x, z) plane
Xi (resp. Yi) highlighted in red (resp. orange). (b). traditional
compression scheme with a measurement matrix A. Each columns
of Xi are measured independently. But the matrix Xi can also
be seen as a column vector of length 16 ∗ 12 = 192 with all its
columns vertically concatenated (long vector on the right), and a
block diagonal matrix can be constructed to measure this vector
and provide an equivalent output as the independently measured
columns (not shown), (c). moreover, the new sensing matrix A′

can incorporate some information about the PSF (left). A sam-
ple PSF is pictured on the right. The coefficients ci reprensent
the PSF value at the pixels coordinates, (d). resulting measure-
ment matrix A′ (it might be necessary to zoom to appreciate the
details).

An additional hurdle is the size of the sensing matrix.
Indeed, assuming a 3D stack of dimensions 512× 512×
101 and a factor 10 compression in z, the sensing matrix
would have a size of 512 ∗ 512 ∗ 10 × 512 ∗ 512 ∗ 101 '
2.6.106× 26.106 ' 69.1012 pixels, which is at least three
orders of magnitude higher than the RAM of modern
computers.

However, since the PSF vanishes very quickly, one
can assume that it has bounded support. One can then
subdivide the "unfolded" vector into subvectors that in-

corporate all the PSF-induced correlation, but discards
pixels far apart, since they those can be processed in
parallel. We implemented such a scheme when possible.
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6.7 Software contributed during the intern-
ship

During the course of the internship, the following
free/open source softwares were contributed (Table 3).
Most of the contributions are bug reports or modifi-
cations to get the software working with Python 3.
However, several Python ports of existing code were
realized (sparseNMF and pySPIRALTAP).

Table 3: Summary of softwares contributed during the internship
Software Description Language Contribution Link
libtiff Read/Write 3D TIFF files Python Debugging for a Python 3 version (1)
rwt Rice Wavelets Toolbox Python Debugging the Python 2 installation (2)
SPIRALTAP Compressed sensing solver Matlab Fixed several I/O bugs + Octave port (3) and (4)
pySPIRALTAP Python port of SPIRALTAP Python Initiation of the port (5)
sparse-NMF Another approach to NMF Python Initiation of the port from Matlab (6)
pyCSalgos Several CS solvers Python Port to Python 3 (7)

1. http://github.com/pearu/pylibtiff/

2. https://github.com/ricedsp/rwt

3. http://drz.ac/code/spiraltap/

4. https://gitlab.com/padouppadoup/SPIRAL-TAP

5. https://gitlab.com/padouppadoup/

pySPIRAL-TAP

6. https://gitlab.com/padouppadoup/sparseNMF

7. https://gitlab.com/padouppadoup/pyCSalgos
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